Implementation of infrared and Raman modalities for glycosaminoglycan characterization in complex systems

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorTaha Mohamed, Hossam
dc.contributor.authorUntereiner, Valérie
dc.contributor.authorD. Sockalingum, Ganesh
dc.contributor.authorBrézillon, Stéphane
dc.date.accessioned2020-02-29T09:02:34Z
dc.date.available2020-02-29T09:02:34Z
dc.date.issued2017
dc.descriptionMSA Google Scholaren_US
dc.description.abstractGlycosaminoglycans (GAGs) are natural, linear and negatively charged heteropolysaccharides which are incident in every mammalian tissue. They consist of repeating disaccharide units, which are composed of either sulfated or non-sulfated monosaccharides. Depending on tissue types, GAGs exhibit structural heterogeneity such as the position and degree of sulfation or within their disaccharide units composition being heparin, heparan sulfate, chondroitine sulfate, dermatan sulfate, keratan sulfate, and hyaluronic acid. They are covalently linked to a core protein (proteoglycans) or as free chains (hyaluronan). GAGs affect cell properties and functions either by direct interaction with cell receptors or by sequestration of growth factors. These evidences of divert biological roles of GAGs make their characterization at cell and tissue levels of importance. Thus, non-invasive techniques are interesting to investigate, to qualitatively and quantitatively characterize GAGs in vitro in order to use them as diagnostic biomarkers and/or as therapeutic targets in several human diseases including cancer. Infrared and Raman microspectroscopies and imaging are sensitive enough to differentiate and classify GAG types and subtypes in spite of their close molecular structures. Spectroscopic markers characteristic of reference GAG molecules were identified. Beyond these investigations of the standard GAG spectral signature, infrared and Raman spectral signatures of GAG were searched in complex biological systems like cells. The aim of the present review is to describe the implementation of these complementary vibrational spectroscopy techniques, and to discuss their potentials, advantages and disadvantages for GAG analysis. In addition, this review presents new data as we show for the first time GAG infrared and Raman spectral signatures from conditioned media and live cells, respectively.en_US
dc.description.sponsorshipSpringer USen_US
dc.identifier.citation1. Iozzo, R.V.: Matrix proteoglycans: from molecular design to cellular function. Annu. Rev. Biochem. 67, 609–652 (1998) CAS Article PubMed Google Scholar 2. Afratis, N., Gialeli, C., Nikitovic, D., Tsegenidis, T., Karousou, E., Theocharis, A.D., Pavao, M.S., Tzanakakis, G.N., Karamanos, N.K.: Glycosaminoglycans: key players in cancer cell biology and treatment. FEBS J. 279(7), 1177–1197 (2012) CAS Article PubMed Google Scholar 3. Esko, J.D., Kimata, K., Lindahl, U.: Proteoglycans and sulfated glycosaminoglycans. In: Varki, A., Cummings, R.D., Esko, J.D., Freeze, H.H., Stanley, P., Bertozzi, C.R., Hart, G.W., Etzler, M.E. (eds.) Essentials of glycobiology. Cold Spring Harbor, NY (2009) Google Scholar 4. Souza-Fernandes, A.B., Pelosi, P., Rocco, P.R.: Bench-to-bedside review: the role of glycosaminoglycans in respiratory disease. Crit. Care 10(6), 237 (2006) Article PubMed PubMed Central Google Scholar 5. Maccari, F., Mantovani, V., Gabrielli, O., Carlucci, A., Zampini, L., Galeazzi, T., Galeotti, F., Coppa, G.V., Volpi, N.: Metabolic fate of milk glycosaminoglycans in breastfed and formula fed newborns. Glycoconj. J. 33(2), 181–188 (2016) CAS Article PubMed Google Scholar 6. Yip, G.W., Smollich, M., Gotte, M.: Therapeutic value of glycosaminoglycans in cancer. Mol. Cancer Ther. 5(9), 2139–2148 (2006) CAS Article PubMed Google Scholar 7. Duchez, S., Pascal, V., Cogne, N., Jayat-Vignoles, C., Julien, R., Cogne, M.: Glycotranscriptome study reveals an enzymatic switch modulating glycosaminoglycan synthesis during B-cell development and activation. Eur. J. Immunol. 41(12), 3632–3644 (2011) CAS Article PubMed Google Scholar 8. Brézillon, S., Pietraszek, K., Maquart, F.X., Wegrowski, Y.: Lumican effects in the control of tumour progression and their links with metalloproteinases and integrins. FEBS J. 280(10), 2369–2381 (2013) Article PubMed Google Scholar 9. Chakravarti, S., Magnuson, T., Lass, J.H., Jepsen, K.J., LaMantia, C., Carroll, H.: Lumican regulates collagen fibril assembly: skin fragility and corneal opacity in the absence of lumican. J. Cell Biol. 141(5), 1277–1286 (1998) CAS Article PubMed PubMed Central Google Scholar 10. Liu, C.Y., Kao, W.W.: Lumican promotes corneal epithelial wound healing. Methods Mol. Biol. 836, 285–290 (2012) CAS Article PubMed Google Scholar 11. Raman, R., Sasisekharan, V., Sasisekharan, R.: Structural insights into biological roles of protein-glycosaminoglycan interactions. Chem. Biol. 12(3), 267–277 (2005) CAS Article PubMed Google Scholar 12. Mizumoto, S., Ikegawa, S., Sugahara, K.: Human genetic disorders caused by mutations in genes encoding biosynthetic enzymes for sulfated glycosaminoglycans. J. Biol. Chem. 288(16), 10953–10961 (2013) CAS Article PubMed PubMed Central Google Scholar 13. Pacella, E., Pacella, F., De Paolis, G., Parisella, F.R., Turchetti, P., Anello, G., Cavallotti, C.: Glycosaminoglycans in the human cornea: age-related changes. Ophthalmol Eye Dis 7, 1–5 (2015) Article PubMed PubMed Central Google Scholar 14. Schwertfeger, K.L., Cowman, M.K., Telmer, P.G., Turley, E.A., McCarthy, J.B.: Hyaluronan, inflammation, and breast cancer progression. Front. Immunol. 6, 236 (2015) Article PubMed PubMed Central Google Scholar 15. Udabage, L., Brownlee, G.R., Waltham, M., Blick, T., Walker, E.C., Heldin, P., Nilsson, S.K., Thompson, E.W., Brown, T.J.: Antisense-mediated suppression of hyaluronan synthase 2 inhibits the tumorigenesis and progression of breast cancer. Cancer Res. 65(14), 6139–6150 (2005) CAS Article PubMed Google Scholar 16. Yang, J., Price, M.A., Neudauer, C.L., Wilson, C., Ferrone, S., Xia, H., Iida, J., Simpson, M.A., McCarthy, J.B.: Melanoma chondroitin sulfate proteoglycan enhances FAK and ERK activation by distinct mechanisms. J. Cell Biol. 165(6), 881–891 (2004) CAS Article PubMed PubMed Central Google Scholar 17. Kim, S.H., Turnbull, J., Guimond, S.: Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J. Endocrinol. 209(2), 139–151 (2011) CAS Article PubMed Google Scholar 18. Itano, N., Sawai, T., Miyaishi, O., Kimata, K.: Relationship between hyaluronan production and metastatic potential of mouse mammary carcinoma cells. Cancer Res. 59(10), 2499–2504 (1999) CAS PubMed Google Scholar 19. Roy, M., Marchetti, D.: Cell surface heparan sulfate released by heparanase promotes melanoma cell migration and angiogenesis. J. Cell. Biochem. 106(2), 200–209 (2009) CAS Article PubMed PubMed Central Google Scholar 20. Teng, Y.H., Aquino, R.S., Park, P.W.: Molecular functions of syndecan-1 in disease. Matrix Biol.: J. Int. Soc. Matrix Biol. 31(1), 3–16 (2012) CAS Article Google Scholar 21. Jiang, X., Couchman, J.R.: Perlecan and tumor angiogenesis. J. Histochem. Cytochem. : Off. J. Histochem. Soc. 51(11), 1393–1410 (2003) CAS Article Google Scholar 22. Neill, T., Painter, H., Buraschi, S., Owens, R.T., Lisanti, M.P., Schaefer, L., Iozzo, R.V.: Decorin antagonizes the angiogenic network: concurrent inhibition of Met, hypoxia inducible factor 1 alpha, vascular endothelial growth factor A, and induction of thrombospondin-1 and TIMP3. J. Biol. Chem. 287(8), 5492–5506 (2012) CAS Article PubMed Google Scholar 23. Siddiqui, MF., Nandi, P., Girish, GV., Nygard, K., Eastabrook, G., de Vrijer, B., Han, VK., Lala, PK.: Decorin over-expression by decidual cells in preeclampsia: a potential blood biomarker. Am. J. Obstet. Gynecol. S0002-9378(16), 00489-0 (2016) 24. Ida, M., Shuo, T., Hirano, K., Tokita, Y., Nakanishi, K., Matsui, F., Aono, S., Fujita, H., Fujiwara, Y., Kaji, T., Oohira, A.: Identification and functions of chondroitin sulfate in the milieu of neural stem cells. J. Biol. Chem. 281(9), 5982–5991 (2006) CAS Article PubMed Google Scholar 25. Netelenbos, T., van den Born, J., Kessler, F.L., Zweegman, S., Merle, P.A., van Oostveen, J.W., Zwaginga, J.J., Huijgens, P.C., Drager, A.M.: Proteoglycans on bone marrow endothelial cells bind and present SDF-1 towards hematopoietic progenitor cells. Leukemia 17(1), 175–184 (2003) CAS Article PubMed Google Scholar 26. Chen, S.G., Xue, C.H., Yin, L.A., Tang, Q.J., Yu, G.L., Chai, W.G.: Comparison of structures and anticoagulant activities of fucosylated chondroitin sulfates from different sea cucumbers. Carbohydr. Polym. 83(2), 688–696 (2011) CAS Article Google Scholar 27. Hileman, R.E., Smith, A.E., Toida, T., Linhardt, R.J.: Preparation and structure of heparin lyase-derived heparan sulfate oligosaccharides. Glycobiology 7(2), 231–239 (1997) CAS Article PubMed Google Scholar 28. MacNair, J.E., Lewis, K.C., Jorgenson, J.W.: Ultrahigh-pressure reversed-phase liquid chromatography in packed capillary columns. Anal. Chem. 69(6), 983–989 (1997) CAS Article PubMed Google Scholar 29. Fura, A., Leary, J.A.: Differentiation of Ca(2+)- and Mg(2+)-coordinated branched trisaccharide isomers: an electrospray ionization and tandem mass spectrometry study. Anal. Chem. 65(20), 2805–2811 (1993) CAS Article PubMed Google Scholar 30. Volpi, N., Maccari, F., Linhardt, R.J.: Quantitative capillary electrophoresis determination of oversulfated chondroitin sulfate as a contaminant in heparin preparations. Anal. Biochem. 388(1), 140–145 (2009) CAS Article PubMed PubMed Central Google Scholar 31. Lamari, F.N., Militsopoulou, M., Mitropoulou, T.N., Hjerpe, A., Karamanos, N.K.: Analysis of glycosaminoglycan-derived disaccharides in biologic samples by capillary electrophoresis and protocol for sequencing glycosaminoglycans. Biomed. Chromatogr. 16(2), 95–102 (2002) CAS Article PubMed Google Scholar 32. Plaas, AH., West, L., Midura, RJ., Hascall, VC.: Disaccharide composition of hyaluronan and chondroitin/dermatan sulfate: Analysis with fluorophore-assisted carbohydrate electrophoresis. In: Iozzo, R. V. (ed) Methods in molecular biology; Vol 171 (2001) 33. Liu, Z.L., Masuko, S., Solakyildirim, K., Pu, D., Linhardt, R.J., Zhang, F.M.: Glycosaminoglycans of the Porcine Central Nervous System. Biochemistry. 49(45), 9839–9847 (2010) 34. Li, B.Y.Z., Liu, H.Y., Zhang, Z.Q., Stansfield, H.E., Dordick, J.S., Linhardt, R.J.: Analysis of glycosaminoglycans in stem cell glycomics. Methods Mol. Biol. 690, 285–300 (2011) CAS Article PubMed PubMed Central Google Scholar 35. Cecchi, T., Passamonti, P.: Retention mechanism for ion-pair chromatography with chaotropic reagents (vol 1216, pg 1789, 2009). J. Chromatogr. A 1216(26), 5164–5164 (2009) CAS Article Google Scholar 36. Cecchi, T., Pucciarelli, F., Passamonti, P.: Extended thermodynamic approach to ion-interaction chromatography for high surface potential: use of potential approximation for simplified retention equations. Chromatographia 54(9–10), 589–593 (2001) CAS Article Google Scholar 37. Jones, C.J., Beni, S., Limtiaco, J.F.K., Langeslay, D.J., Larive, C.K.: Heparin characterization: challenges and solutions. Annu. Rev. Anal. Chem. 4, 439–465 (2011) CAS Article Google Scholar 38. Cecchi, T., Pucciarelli, F., Passamonti, P.: Extended thermodynamic approach to ion interaction chromatography. Anal. Chem. 73(11), 2632–2639 (2001) CAS Article PubMed Google Scholar 39. Reinhold, V.N., Reinhold, B.B., Costello, C.E.: Carbohydrate molecular weight profiling, sequence, linkage, and branching data: ES-MS and CID. Anal. Chem. 67(11), 1772–1784 (1995) CAS Article PubMed Google Scholar 40. Juhasz, P., Biemann, K.: Mass spectrometric molecular-weight determination of highly acidic compounds of biological significance via their complexes with basic polypeptides. Proc. Natl. Acad. Sci. U. S. A. 91(10), 4333–4337 (1994) CAS Article PubMed PubMed Central Google Scholar 41. Shriver, Z., Raman, R., Venkataraman, G., Drummond, K., Turnbull, J., Toida, T., Linhardt, R., Biemann, K., Sasisekharan, R.: Sequencing of 3-O sulfate containing heparin decasaccharides with a partial antithrombin III binding site. Proc. Natl. Acad. Sci. U. S. A. 97(19), 10359–10364 (2000) CAS Article PubMed PubMed Central Google Scholar 42. Takagaki, K., Munakata, H., Nakamura, W., Matsuya, H., Majima, M., Endo, M.: Ion-spray mass spectrometry for identification of the nonreducing terminal sugar of glycosaminoglycan. Glycobiology 8(7), 719–724 (1998) CAS Article PubMed Google Scholar 43. Pervin, A., Gallo, C., Jandik, K.A., Han, X.J., Linhardt, R.J.: Preparation and structural characterization of large heparin-derived oligosaccharides. Glycobiology 5(1), 83–95 (1995) CAS Article PubMed Google Scholar 44. Yang, H.O., Gunay, N.S., Toida, T., Kuberan, B., Yu, G., Kim, Y.S., Linhardt, R.J.: Preparation and structural determination of dermatan sulfate-derived oligosaccharides. Glycobiology 10(10), 1033–1039 (2000) CAS Article PubMed Google Scholar 45. Mao, W.J., Thanawiroon, C., Linhardt, R.J.: Capillary electrophoresis for the analysis of glycosaminoglycans and glycosaminoglycan-derived oligosaccharides. Biomed. Chromatogr. 16(2), 77–94 (2002) CAS Article PubMed Google Scholar 46. Ruiz-Calero, V., Moyano, E., Puignou, L., Galceran, M.T.: Pressure-assisted capillary electrophoresis-electrospray ion trap mass spectrometry for the analysis of heparin depolymerised disaccharides. J. Chromatogr. A 914(1–2), 277–291 (2001) CAS Article PubMed Google Scholar 47. Zamfir, A., Seidler, D.G., Kresse, H., Peter-Katalinic, J.: Structural characterization of chondroitin/dermatan sulfate oligosaccharides from bovine aorta by capillary electrophoresis and electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Rapid Commun. Mass Spectrom. 16(21), 2015–2024 (2002) CAS Article PubMed Google Scholar 48. Behnke, B., Schlotterbeck, G., Tallarek, U., Strohschein, S., Tseng, L.H., Keller, T., Albert, K., Bayer, E.: Capillary HPLC-NMR coupling high-resolution NMR spectroscopy in the nanoliter scale. Anal. Chem. 68(7), 1110–1115 (1996) CAS Article PubMed Google Scholar 49. Chang, Y.Q., Yang, B., Zhao, X., Linhardt, R.J.: Analysis of glycosaminoglycan-derived disaccharides by capillary electrophoresis using laser-induced fluorescence detection. Anal. Biochem. 427(1), 91–98 (2012) CAS Article PubMed PubMed Central Google Scholar 50. Karousou, E., Asimakopoulou, A.P., Zafeiropoulou, V., Viola, M., Monti, L., Rossi, A., Passi, A., Karamanos, N.: Fast screening of glycosaminoglycan disaccharides by fluorophore-assisted carbohydrate electrophoresis (FACE): applications to biologic samples and pharmaceutical formulations. Methods Mol. Biol. 1229, 143–159 (2015) CAS Article PubMed Google Scholar 51. Karousou, E., Asimakopoulou, A., Monti, L., Zafeiropoulou, V., Afratis, N., Gartaganis, P., Rossi, A., Passi, A., Karamanos, N.K.: FACE analysis as a fast and reliable methodology to monitor the sulfation and total amount of chondroitin sulfate in biological samples of clinical importance. Molecules 19(6), 7959–7980 (2014) Article PubMed Google Scholar 52. Mainreck, N., Brézillon, S., Sockalingum, G.D., Maquart, F.X., Manfait, M., Wegrowski, Y.: Rapid characterization of glycosaminoglycans using a combined approach by infrared and Raman microspectroscopies. J. Pharm. Sci. 100(2), 441–450 (2011) CAS Article PubMed Google Scholar 53. Mainreck, N., Brézillon, S., Sockalingum, G.D., Maquart, F.X., Manfait, M., Wegrowski, Y.: Characterization of glycosaminoglycans by tandem vibrational microspectroscopy and multivariate data analysis. Methods Mol. Biol. 836, 117–130 (2012) CAS Article PubMed Google Scholar 54. Brézillon, S., Untereiner, V., Lovergne, L., Tadeo, I., Noguera, R., Maquart, F.X., Wegrowski, Y., Sockalingum, G.D.: Glycosaminoglycan profiling in different cell types using infrared spectroscopy and imaging. Anal. Bioanal. Chem. 406(24), 5795–5803 (2014) Article PubMed Google Scholar 55. Parker, F.S.: Applications of infrared, Raman, and resonance Raman spectroscopy in biochemistry. Springer, Heidelberg (1983) Google Scholar 56. Orr, S.F.: Infra-red spectroscopic studies of some polysaccharides. Biochim. Biophys. Acta 14(2), 173–181 (1954) CAS Article PubMed Google Scholar 57. Gilli, R., Kacuráková, M., Mathlouthi, M., Navarini, L., Paoletti, S.: FTIR studies of sodium hyaluronate and its oligomers in the amorphous solid phase and in aqueous, solution. Carbohydr. Res. 263, 315–326 (1994) CAS Article PubMed Google Scholar 58. Lee, S., Myers, L., Powell, J., Suleski, T., Rupprecht, A.: Raman and infrared studies of wet spun films of Na-hyaluronate. J. Biomol. Struct. Dyn. 11(1), 191–201 (1993) CAS Article PubMed Google Scholar 59. Servaty, R., Schiller, J., Binder, H., Arnold, K.: Hydration of polymeric components of cartilage--an infrared spectroscopic study on hyaluronic acid and chondroitin sulfate. Int. J. Biol. Macromol. 28, 121–127 (2001) CAS Article PubMed Google Scholar 60. Maréchal, Y., Milas, M., Rinaudo, M.: Hydration of hyaluronan polysaccharide observed by IR spectrometry. III. Structure and mechanism of hydration. Biopolymers 72(3), 162–173 (2003) Article PubMed Google Scholar 61. Haxaire, K., Maréchal, Y., Milas, M., Rinaudo, M.: Hydration of polysaccharide hyaluronan observed by IR spectrometry. I. Preliminary experiments and peak assignments. Biopolymers 72, 10–20 (2003) CAS Article PubMed Google Scholar 62. Haxaire, K., Maréchal, Y., Milas, M., Rinaudo, M.: Hydration of hyaluronan polysaccharide observed by IR spectrometry. II. Definition and quantitative analysis of elementary hydration spectra and water uptake. Biopolymers 72(3), 149–161 (2003) CAS Article PubMed Google Scholar 63. Reineck, I., DeAnna, J., Suleski, T., Lee, S., Rupprecht, A.: A Raman study of the hydration of wet-spun films of Li-hyaluronate. J. Biomol. Struct. Dyn. 21(1), 153–157 (2003) CAS Article PubMed Google Scholar 64. Garnjanagoonchorn, W., Wongekalak, L., Engkagul, A.: Determination of chondroitin sulfate from different sources of cartilage. Chem. Eng. Process. Process Intensif. 46, 465–471 (2007) CAS Article Google Scholar 65. Bychkov, S., Bogatov, V., Kuz’mina, S.: Comparative study of the IR-spectra of glycosaminoglycans and their monomers. Biull. Eksp. Biol. Med. 91, 442–445 (1981) CAS Article PubMed Google Scholar 66. Bansil, R., Yannas, I., Stanley, H.: Raman spectroscopy: a structural probe of glycosaminoglycans. Biochim. Biophys. Acta 541(4), 535–542 (1978) CAS Article PubMed Google Scholar 67. Terho, T., Hartiala, K., Hakkinen, I.: Infrared spectroscopic investigations of a new acid mucopolysaccharide isolated from human gastric juice. Nature 211(5045), 198–199 (1996) Article Google Scholar 68. Cabassi, F., Casu, B., Perlin, A.S.: Infrared absorption and Raman scattering of sulfate groups of heparin and related glycosaminoglycans in aqueous solution. Carbohydr. Res. 63(C), 1–11 (1978) CAS Article Google Scholar 69. Longas, M., Breitweiser, K.: Sulfate composition of glycosaminoglycans determined by infrared spectroscopy. Anal. Biochem. 192(1), 193–196 (1991) CAS Article PubMed Google Scholar 70. Atha, D., Gaigalas, A., Reipa, V.: Structural analysis of heparin by Raman spectroscopy. J. Pharm. Sci. 85(1), 52–56 (1996) CAS Article PubMed Google Scholar 71. Grant, D., Long, W., Moffat, C., Williamson, F.: Infrared spectroscopy as a method for investigating the conformations of iduronate saccharide residues in glycosaminoglycans. Biochem. Soc. Trans. 18(6), 1277–1279 (1990) CAS PubMed Google Scholar 72. Grant, D., Long, W., Moffat, C., Williamson, F.: Effect of chemical reduction of the iduronate of heparin on IR absorption peaks sensitive to sugar conformation. Biochem. Soc. Trans. 18(6), 1279–1280 (1990) CAS Article PubMed Google Scholar 73. Grant, D., Long, W., Williamson, F.: A possible ring conformational change of iduronate residues detected by i.r. spectroscopy of aqueous solutions of lithium-heparin. Biochem. Soc. Trans. 18(6), 1281–1282 (1990) CAS Article PubMed Google Scholar 74. Grant, D., Long, W., Moffat, C., Williamson, F.: Infrared spectroscopy of heparins suggests that the region 750–950 cm−1 is, sensitive to changes in iduronate residue ring conformation. Biochem. J. 275(Pt 1), 193–197 (1991) CAS Article PubMed PubMed Central Google Scholar 75. Ellis, R., Green, E., Winlove, C.: Structural analysis of glycosaminoglycans and proteoglycans by means of Raman microspectrometry. Connect. Tissue Res. 50(1), 29–36 (2009) Article PubMed Google Scholar 76. Longas, M., Russell, C., He, X.: Chemical alterations of hyaluronic acid and dermatan sulfate detected in aging human skin by infrared spectroscopy. Biochim. Biophys. Acta 884(2), 265–269 (1986) CAS Article PubMed Google Scholar 77. Longas, M., Russell, C., He, X.: Evidence for structural changes in dermatan sulfate and hyaluronic acid with aging. Carbohydr. Res. 159(1), 127–136 (1987) CAS Article PubMed Google Scholar 78. Foot, M., Mulholland, M.: Classification of chondroitin sulfate A, chondroitin sulfate C, glucosamine hydrochloride and glucosamine 6 sulfate using chemometric techniques. J. Pharm. Biomed. Anal. 38(3), 397–407 (2005) CAS Article PubMed Google Scholar 79. Movasaghi, Z., Rehman, S., Rehman, I.: Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 42, 493–541 (2007) CAS Article Google Scholar 80. Miller, G.J., Hansen, S.U., Baráth, M., Johannessen, C., Blanch, E.W., Jayson, G.C., Gardiner, J.M.: Synthesis of a heparin-related GlcN-IdoA sulfation-site variable disaccharide library and analysis by Raman and ROA spectroscopy. Carbohydr. Res. 400, 44–53 (2014) CAS Article PubMed PubMed Central Google Scholar 81. Kamilari, E., Kontoyannis, C., Lamari, F., Orkoula, M.: Investigation of GAG-collagen interactions using spectroscopic techniques. 9th Panhellenic Scientific Chemical Engineering Congress, May 23-25th 2013 82. Draux, F., Jeannesson, P., Beljebbar, A., Tfayli, A., Fourre, N., Manfait, M., Sulé-Suso, J., Sockalingum, G.D.: Raman spectral imaging of single living cancer cells: a preliminary study. Analyst 134(3), 542–548 (2009) CAS Article PubMed Google Scholar 83. Draux, F., Gobinet, C., Sulé-Suso, J., Trussardi, A., Manfait, M., Jeannesson, P., Sockalingum, G.D.: Raman spectral imaging of single cancer cells: probing the impact of sample fixation methods. Anal. Bioanal. Chem. 397(7), 2727–2737 (2010) CAS Article PubMed Google Scholar 84. Draux, F., Gobinet, C., Sulé-Suso, J., Manfait, M., Jeannesson, P., Sockalingum, G.D.: Raman imaging of single living cells: probing effects of non-cytotoxic doses of an anti-cancer drug. Analyst 136(13), 2718–2725 (2011) CAS Article PubMed Google Scholar 85. Tfayli, A., Piot, O., Draux, F., Pitre, F., Manfait, M.: Molecular characterization of reconstructed skin model by Raman microspectroscopy: comparison with excised human skin. Biopolymers 87(4), 261–274 (2007) CAS Article PubMed Google Scholar 86. Craig, D., McAugthrie, S., Simpson, J., McCraw, C., Faulds, K., Graham, D.: Confocal SERS mapping of glycan expression for the identification of cancerous cells. Anal. Chem. 86(10), 4775–4782 (2013) Article Google Scholar 87. Wang, W., Zhao, J., Short, M., Zeng, H.: Real-time in vivo cancer diagnosis using Raman spectroscopy. J. Biophotonics 8(7), 527–545 (2015) CAS Article PubMed Google Scholar 88. Butler, H.J., Ashton, L., Bird, B., Cinque, G., Curtis, K., Dorney, J., Esmonde-White, K., Fullwood, N.J., Gardner, B., Martin-Hirsch, P.L., Walsh, M.J., McAinsh, M.R., Stone, N., Martin, F.L.: Using Raman spectroscopy to characterize biological materials. Nat. Protoc. 11(4), 664–687 (2016) CAS Article PubMed Google Scholar 89. Brauchle, E., Noor, S., Holtorf, E., Garbe, C., Schenke-Layland, K., Busch, C.: Raman spectroscopy as an analytical tool for melanoma research. Clin. Exp. Dermatol. 39(5), 636–645 (2014) CAS Article PubMed Google Scholar 90. Bergholt, M.S., Lin, K., Wang, J., Zheng, W., Xu, H., Huang, Q., Ren, J.L., Ho, K.Y., The, M., Srivastava, S., Wong, B., Yeoh, K.G., Huang, Z.: Simultaneous fingerprint and high-wavenumber fiber-optic Raman spectroscopy enhances real-time in vivo diagnosis of adenomatous polyps during colonoscopy. J. Biophotonics 9(4), 333–342 (2016) 91. Baker, M.J., Hussain, S.R., Lovergne, L., Untereiner, V., Hughes, C., Lukaszewski, R.A., Thiéfin, G., Sockalingum, G.D.: Developing and understanding biofluid vibrational spectroscopy: a critical review. Chem. Soc. Rev. 45(7), 1803–1818 (2016)en_US
dc.identifier.urihttps://t.ly/P5q9V
dc.language.isoenen_US
dc.publisherSpringer USen_US
dc.relation.ispartofseriesGlycoconjugate journal;Volume: 34 Issue: 3 Pages: 309-323
dc.subjectUniversity of Glycosaminoglycans; Infrared spectroscopy; Raman spectroscopy; CHO-WT; CHO-745; Chondrocytes; Conditioned media; Data analysisen_US
dc.titleImplementation of infrared and Raman modalities for glycosaminoglycan characterization in complex systemsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Faculty of Biotechnology Research Paper
Loading...
Thumbnail Image
Name:
Mohamed2017_Article_ImplementationOfInfraredAndRam.pdf
Size:
2.4 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
51 B
Format:
Item-specific license agreed upon to submission
Description: