Anaerobic biodegradation of anthracene by oral Firmicutes isolates from smokers and its potential pathway
Date
2023-04
Journal Title
Journal ISSN
Volume Title
Type
Article
Publisher
Elsevier Ltd.
Series Info
International Biodeterioration & Biodegradation;180 (2023) 105598
Scientific Journal Rankings
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) from tobacco smoke has been linked to many negative
health effects. Studies on the biodegradation of PAHs by human microbiota and detailed pathways for their
anaerobic biodegradation are scarce despite their importance in getting rid of these toxic compounds. In a
previous study for our group, we determined the ability of oral bacterial isolates in the anaerobic biodegradation
of anthracene as a model of PAHs. Three isolates with the highest anthracene degradation ability were selected
for the present study which include Limosilactobacillus fermentum, Veillonella parvula, and Streptococcus anginosus.
In this study, we aimed at exploring and elucidating the anthracene anaerobic biodegradation pathways in
selected Firmicutes oral isolates. Metabolites throughout the pathway were detected by gas chromatography
coupled with mass spectroscopy (GC-MS) using anthracene as sole source of carbon. After incubation for 3 days,
anthracene was undetected in the supernatant of L. fermentum and V. parvula, while a residual of 3% of
anthracene was detected in presence of S. anginosus. Results revealed that anaerobic biodegradation by
L. fermentum and V. parvula started with hydroxylation and dehydrogenation producing 9,10- anthraquinone and
ended up with simpler structures such as catechol, while S. anginosus hydroxylation for anthracene resulted in the
production of 1,2-anthracenediol and ended up with catechol and phthalic acid. The biodegradation of
anthracene by oral bacteria could convert it to other toxic metabolites such as anthraquinone and catechol which
were reported to have potential carcinogenic effects. Moreover, fatty acids detected as biodegradation metab-
olites could be one of the causes of smokers’ heart-related diseases. Thus, this study explored oral metabolites
resulting from smoking under anaerobic conditions towards elucidating the role of oral microbiota in health and
disease states.
Description
Keywords
Anthracene, Anaerobic biodegradation, Oral firmicutes, Streptococcus anginosus, Limosilactobacillus fermentum, Veillonella parvula