Novel thienopyrimidine derivatives as dual EGFR and VEGFR-2 inhibitors: design, synthesis, anticancer activity and effect on cell cycle profile
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Mghwary A.E.-S. | |
dc.contributor.author | Gedawy E.M. | |
dc.contributor.author | Kamal A.M. | |
dc.contributor.author | Abuel-Maaty S.M. | |
dc.contributor.other | Department of Pharmaceutical Organic Chemistry | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Department of Pharmaceutical Chemistry | |
dc.contributor.other | Faculty of Pharmacy and Pharmaceutical Industries | |
dc.contributor.other | Badr University in Cairo BUC | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Department of Organic Chemistry | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | October University for Modern Science and Arts (MSA) | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:40:43Z | |
dc.date.available | 2020-01-09T20:40:43Z | |
dc.date.issued | 2019 | |
dc.description | Scopus | |
dc.description.abstract | Aim: Design and synthesis of thienopyrimidine derivatives as dual EGFR and VEGFR-2 inhibitors.Material and methods: A series of novel 6,7,8,9-tetrahydro-5H-cyclohepta[4,5]thieno[2,3-d]pyrimidine derivatives with different substituents on C-4 position was synthesized and evaluated for their anticancer activity against MCF-7 cell line. EGFR, VEGFR-2 inhibitory assay, the cell cycle analysis and apoptosis induction ability of the most potent compound 5f were evaluated.Results: Most of the compounds showed moderate to significant anticancer activity. Compound 5f exhibited the most potent anticancer activity being 1.73- and 4.64-folds more potent than erlotinib and doxorubicin, respectively. Compound 5f showed potent EGFR inhibitory activity being 1.18-folds more potent than reference standard erlotinib and it also showed good VEGFR-2 inhibitory activity at the micromolar level with IC 50 value 1.23��M. Compound 5f caused induction of cell cycle arrest at G2/M phase and accumulation of cells in pre-G1 phase. Compound 5f induced cellular apoptosis. � 2019, � 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=17605&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1080/14756366.2019.1593160 | |
dc.identifier.doi | PubMed ID 30919701 | |
dc.identifier.issn | 14756366 | |
dc.identifier.other | https://doi.org/10.1080/14756366.2019.1593160 | |
dc.identifier.other | PubMed ID 30919701 | |
dc.identifier.uri | https://t.ly/y6MXy | |
dc.language.iso | English | en_US |
dc.publisher | Taylor and Francis Ltd | en_US |
dc.relation.ispartofseries | Journal of Enzyme Inhibition and Medicinal Chemistry | |
dc.relation.ispartofseries | 34 | |
dc.subject | anticancer activity | en_US |
dc.subject | apoptosis | en_US |
dc.subject | design | en_US |
dc.subject | EGFR | en_US |
dc.subject | synthesis | en_US |
dc.subject | Thieno[2,3-d]pyrimidines | en_US |
dc.subject | vandetanib | en_US |
dc.subject | VEGFR-2 | en_US |
dc.subject | 3 [(6,7,8,9 tetrahydro 5h cyclohepta[4,5]thieno[2,3 d]pyrimidin 4 yl)oxy]aniline | en_US |
dc.subject | 4 (2 chlorophenoxy) 6,7,8,9 tetrahydro 5h cyclohepta[4,5]thieno[2,3 d]pyrimidine | en_US |
dc.subject | 4 (4 bromophenoxy) 6,7,8,9 tetrahydro 5h cyclohepta[4,5]thieno[2,3 d]pyrimidine | en_US |
dc.subject | 4 (4 chloro 3 methylphenoxy) 6,7,8,9 tetrahydro 5h cyclohepta[4,5]thieno[2,3 d]pyrimidine | en_US |
dc.subject | 4 (4 chlorophenoxy) 6,7,8,9 tetrahydro 5h cyclohepta[4,5]thieno[2,3 d]pyrimidine | en_US |
dc.subject | 4 (4 fluorophenoxy) 6,7,8,9 tetrahydro 5h cyclohepta[4,5]thieno[2,3 d]pyrimidine | en_US |
dc.subject | 4 (4 methoxyphenoxy) 6,7,8,9 tetrahydro 5h cyclohepta[4,5]thieno[2,3 d]pyrimidine | en_US |
dc.subject | 4 (4 nitrophenoxy) 6,7,8,9 tetrahydro 5h cyclohepta[4,5]thieno[2,3 d]pyrimidine | en_US |
dc.subject | 4 (4 tolyloxy) 6,7,8,9 tetrahydro 5h cyclohepta[4,5]thieno[2,3 d]pyrimidine | en_US |
dc.subject | 4 (o tolyloxy) 6,7,8,9 tetrahydro 5h cyclohepta[4,5]thieno[2,3 d]pyrimidine | en_US |
dc.subject | 4 [(6,7,8,9 tetrahydro 5h cyclohepta[4,5]thieno[2,3 d]pyrimidin 4 yl)amino]benzenesulfonamide | en_US |
dc.subject | 4 [(6,7,8,9 tetrahydro 5h cyclohepta[4,5]thieno[2,3 d]pyrimidin 4 yl)oxy]aniline | en_US |
dc.subject | antineoplastic agent | en_US |
dc.subject | doxorubicin | en_US |
dc.subject | epidermal growth factor receptor | en_US |
dc.subject | epidermal growth factor receptor kinase inhibitor | en_US |
dc.subject | erlotinib | en_US |
dc.subject | gefitinib | en_US |
dc.subject | lapatinib | en_US |
dc.subject | n (4 methylpyrimidin 2 yl) 4 [(6,7,8,9 tetrahydro 5h cyclohepta[4,5]thieno[2,3 d]pyrimidin 4 yl)amino]benzenesulfonamide | en_US |
dc.subject | n (pyrimidin 2 yl) 4 [(6,7,8,9 tetrahydro 5h cyclohepta[4,5] thieno[2,3 d]pyrimidin 4 yl)amino]benzenesulfonamide | en_US |
dc.subject | pyrimidine derivative | en_US |
dc.subject | unclassified drug | en_US |
dc.subject | vandetanib | en_US |
dc.subject | vasculotropin receptor 2 | en_US |
dc.subject | vasculotropin receptor 2 inhibitor | en_US |
dc.subject | antineoplastic agent | en_US |
dc.subject | EGFR protein, human | en_US |
dc.subject | epidermal growth factor receptor | en_US |
dc.subject | KDR protein, human | en_US |
dc.subject | protein kinase inhibitor | en_US |
dc.subject | pyrimidine derivative | en_US |
dc.subject | thienopyrimidine | en_US |
dc.subject | vasculotropin receptor 2 | en_US |
dc.subject | antineoplastic activity | en_US |
dc.subject | apoptosis | en_US |
dc.subject | Article | en_US |
dc.subject | carbon nuclear magnetic resonance | en_US |
dc.subject | cell cycle | en_US |
dc.subject | cell cycle arrest | en_US |
dc.subject | cell cycle G2 phase | en_US |
dc.subject | cell cycle M phase | en_US |
dc.subject | chlorination | en_US |
dc.subject | controlled study | en_US |
dc.subject | drug design | en_US |
dc.subject | drug synthesis | en_US |
dc.subject | elemental analysis | en_US |
dc.subject | enzyme inhibition | en_US |
dc.subject | heating | en_US |
dc.subject | human | en_US |
dc.subject | human cell | en_US |
dc.subject | IC50 | en_US |
dc.subject | MCF-7 cell line | en_US |
dc.subject | MTT assay | en_US |
dc.subject | nucleophilicity | en_US |
dc.subject | priority journal | en_US |
dc.subject | proton nuclear magnetic resonance | en_US |
dc.subject | reaction analysis | en_US |
dc.subject | substitution reaction | en_US |
dc.subject | antagonists and inhibitors | en_US |
dc.subject | cell cycle | en_US |
dc.subject | cell proliferation | en_US |
dc.subject | chemical structure | en_US |
dc.subject | chemistry | en_US |
dc.subject | dose response | en_US |
dc.subject | drug effect | en_US |
dc.subject | drug screening | en_US |
dc.subject | metabolism | en_US |
dc.subject | molecular docking | en_US |
dc.subject | structure activity relation | en_US |
dc.subject | synthesis | en_US |
dc.subject | Antineoplastic Agents | en_US |
dc.subject | Apoptosis | en_US |
dc.subject | Cell Cycle | en_US |
dc.subject | Cell Proliferation | en_US |
dc.subject | Dose-Response Relationship, Drug | en_US |
dc.subject | Drug Screening Assays, Antitumor | en_US |
dc.subject | ErbB Receptors | en_US |
dc.subject | Humans | en_US |
dc.subject | MCF-7 Cells | en_US |
dc.subject | Molecular Docking Simulation | en_US |
dc.subject | Molecular Structure | en_US |
dc.subject | Protein Kinase Inhibitors | en_US |
dc.subject | Pyrimidines | en_US |
dc.subject | Structure-Activity Relationship | en_US |
dc.subject | Vascular Endothelial Growth Factor Receptor-2 | en_US |
dc.title | Novel thienopyrimidine derivatives as dual EGFR and VEGFR-2 inhibitors: design, synthesis, anticancer activity and effect on cell cycle profile | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Hunter, T., Blume-Jensen, P., Oncogenic kinase signalling (2001) Nature, 411, pp. 355-365; Laufer, S., Bajorath, J., New frontiers in kinases: second generation inhibitors (2014) J Med Chem, 57, pp. 2167-2168; Antonello, A., Tarozzi, A., Morroni, F., Multitarget-directed drug design strategy: a novel molecule designed to block epidermal growth factor receptor (EGFR) and to exert proapoptotic effects (2006) J Med Chem, 49, pp. 6642-6645; Masuda, H., Zhang, D., Bartholomeusz, C., Role of epidermal growth factor receptor in breast cancer (2012) Breast Cancer Res Treat, 136, pp. 331-345; Zhu, H., Dougherty, U., Robinson, V., EGFR signals downregulate tumor suppressors miR-143 and miR-145 in western diet�promoted murine colon cancer: role of G1 regulators (2011) Mol Cancer Res, 9, pp. 960-975; Nielsen, J.S., Jakobsen, E., H�lund, B., Prognostic significance of p53, Her?2, and EGFR overexpression in borderline and epithelial ovarian cancer (2004) Int J Gynecol Cancer, 14, pp. 1086-1096; Gan, Y., Shi, C., Inge, L., Differential roles of ERK and Akt pathways in regulation of EGFR-mediated signaling and motility in prostate cancer cells (2010) Oncogene, 29, pp. 4947-4958; Tabernero, J., The role of VEGF and EGFR inhibition: implications for combining anti-VEGF and anti-EGFR agents (2007) Mol Cancer Res, 5, pp. 203-220; Folkman, J., D�Amore, P.A., Blood vessel formation: what is its molecular basis? (1996) Cell, 87, pp. 1153-1155; Musumeci, F., Radi, M., Brullo, C., Schenone, S., Vascular endothelial growth factor (VEGF) receptors: drugs and new inhibitors (2012) J Med Chem, 55, pp. 10797-10822; Holmes, K., Roberts, O.L., Thomas, A.M., Cross, M.J., Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition (2007) Cell Signal, 19, pp. 2003-2012; Amin, D.N., Bielenberg, D.R., Lifshits, E., Targeting EGFR activity in blood vessels is sufficient to inhibit tumor growth and is accompanied by an increase in VEGFR-2 dependence in tumor endothelial cells (2008) Microvasc Res, 76, pp. 15-22; Maity, A., Pore, N., Lee, J., Epidermal growth factor receptor transcriptionally up-regulates vascular endothelial growth factor expression in human glioblastoma cells via a pathway involving phosphatidylinositol 3?-kinase and distinct from that induced by hypoxia (2000) Cancer Res, 60, pp. 5879-5886; Garofalo, A., Goossens, L., Lemoine, A., [4-(6,7-Disubstituted quinazolin-4-ylamino)phenyl]carbamic acid esters: a novel series of dual EGFR/VEGFR-2 tyrosine kinase inhibitors (2011) Med Chem Commun, 2, pp. 65-72; Bianco, C., Giovannetti, E., Ciardiello, F., Synergistic antitumor activity of ZD6474, an inhibitor of vascular endothelial growth factor receptor and epidermal growth factor receptor signaling, with gemcitabine and ionizing radiation against pancreatic cancer (2006) Clin Cancer Res, 12, pp. 7099-7107; Le Tourneau, C., Faivre, S., Raymond, E., New developments in multitargeted therapy for patients with solid tumours (2008) Cancer Treat Rev, 34, pp. 37-48; Carlomagno, F., Vitagliano, D., Guida, T., ZD6474, an orally available inhibitor of kdr tyrosine kinase activity, efficiently blocks oncogenic ret kinases (2002) Cancer Res, 62, pp. 7284-7290; Garofalo, A., Goossens, L., Lemoine, A., Quinazoline-urea, new protein kinase inhibitors in treatment of prostate cancer (2010) J Enzyme Inhib Med Chem, 25, pp. 158-171; De Castro Barbosa, M.L., Lima, L.M., Tesch, R., Novel 2-chloro-4-anilino-quinazoline derivatives as EGFR and VEGFR-2 dual inhibitors (2014) Eur J Med Chem, 71, pp. 1-14; Wedge, S.R., Ogilvie, D.J., Dukes, M., ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration (2002) Cancer Res, 62, pp. 4645-4655; Wells, S.A., Gosnell, J.E., Gagel, R.F., Vandetanib for the treatment of patients with locally advanced or metastatic hereditary medullary thyroid Cancer (2010) J Clin Oncol, 28, pp. 767-772; Sarkar, S., Rajput, S., Tripathi, A.K., Mandal, M., Targeted therapy against EGFR and VEGFR using ZD6474 enhances the therapeutic potential of UV-B phototherapy in breast cancer cells (2013) Mol Cancer, 12, pp. 122-139; Sarkar, S., Mazumdar, A., Dash, R., ZD6474, a dual tyrosine kinase inhibitor of EGFR and VEGFR-2, inhibits MAPK/ERK and AKT/PI3-K and induces apoptosis in breast cancer cells (2010) Cancer Biol Ther, 9, pp. 592-603; Ciardiello, F., Caputo, R., Damiano, V., Antitumor effects of ZD6474, a small molecule vascular endothelial growth factor receptor tyrosine kinase inhibitor, with additional activity against epidermal growth factor receptor tyrosine kinase (2003) Clin Cancer Res, 9, pp. 1546-1556; Meyerhardt, J.A., Ancukiewicz, M., Abrams, T.A., Phase I study of cetuximab, irinotecan, and vandetanib (ZD6474) as therapy for patients with previously treated metastastic colorectal cancer (2012) PLoS One, 7; Liu, Y., Qi, M., Hou, S., Risk of rash associated with vandetanib treatment in non-small-cell lung cancer patients: a meta-analysis of 9 randomized controlled trials (2017) Medicine, 96, p. e8345; Abouzid, K., Shouman, S., Design, synthesis and in vitro antitumor activity of 4-aminoquinoline and 4-aminoquinazoline derivatives targeting EGFR tyrosine kinase (2008) Bioorg Med Chem, 16, pp. 7543-7551; Ravez, S., Arsenlis, S., Barczyk, A., Synthesis and biological evaluation of di-aryl urea derivatives as c-Kit inhibitors (2015) Bioorg Med Chem, 23, pp. 7340-7347; Gaber, A.A., Bayoumi, A.H., El-morsy, A.M., Design, synthesis and anticancer evaluation of 1H-pyrazolo[3,4-d]pyrimidine derivatives as potent EGFR WT and EGFR T790M inhibitors and apoptosis inducers (2018) Bioorg Chem, 80, pp. 375-395; Lee, K., Jeong, K.W., Lee, Y., Pharmacophore modeling and virtual screening studies for new VEGFR-2 kinase inhibitors (2010) Eur J Med Chem, 45, pp. 5420-5427; Kassab, A.E., Gedawy, E.M., Synthesis and anticancer activity of novel 2-pyridyl hexahyrocyclooctathieno[2,3-d]pyrimidine derivatives (2013) Eur J Med Chem, 63, pp. 224-230; Adly, M.E., Gedawy, E.M., El-Malah, A.A., El-Telbany, F.A., Synthesis of novel thieno[2,3-d]pyrimidine derivatives and evaluation of their cytotoxicity and EGFR inhibitory activity (2018) Anticancer Agents Med Chem, 18, pp. 747-756; Arya, V.P., Synthesis of new heterocycles. 6. syntheses of certain novel condensed thiophenes (1972) Indian J of Chem, 10, pp. 1141-1150; Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays (1983) J Immunol Methods, 65, pp. 55-63; Gewald, K., Heterocyclen aus CH?aciden Nitrilen, VII. 2?amino?thiophene aus ??oxo?mercaptanen und methylenaktiven nitrilen (1965) Chem Ber, 98, pp. 3571-3577; Gewald, K., Schinke, E., B�ttcher, H., Heterocyclen aus CH?aciden nitrilen, VIII. 2?amino?thiophene aus methylenaktiven nitrilen, carbonylverbindungen und Schwefel (1966) Chem Ber, 99, pp. 94-100; Sabnis, R.W., Rangnekar, D.W., Sonawane, N.D., 2?Aminothiophenes by the Gewald reaction (1999) J Heterocycl Chem, 36, pp. 333-345; Borzilleri, R.M., Bhide, R.S., Barrish, J.C., Discovery and evaluation of N -cyclopropyl-2,4-difluoro-5-((2-(pyridin-2-ylamino)thiazol-5-ylmethyl)amino)benzamide (BMS-605541), a Selective and orally efficacious inhibitor of vascular endothelial growth factor receptor-2 (2006) J Med Chem, 49, pp. 3766-3769; Garofalo, A., Farce, A., Ravez, S., Synthesis and structure�activity relationships of (aryloxy)quinazoline ureas as novel, potent, and selective vascular endothelial growth factor receptor-2 inhibitors (2012) J Med Chem, 55, pp. 1189-1204; McTigue, M., Murray, B.W., Chen, J.H., Molecular conformations, interactions, and properties associated with drug efficiency and clinical performance among VEGFR TK inhibitors (2012) Proc Natl Acad Sci USA, 109, pp. 18281-18289 | |
dcterms.source | Scopus |