Novel thienopyrimidine derivatives as dual EGFR and VEGFR-2 inhibitors: design, synthesis, anticancer activity and effect on cell cycle profile

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorMghwary A.E.-S.
dc.contributor.authorGedawy E.M.
dc.contributor.authorKamal A.M.
dc.contributor.authorAbuel-Maaty S.M.
dc.contributor.otherDepartment of Pharmaceutical Organic Chemistry
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherCairo University
dc.contributor.otherCairo
dc.contributor.otherEgypt; Department of Pharmaceutical Chemistry
dc.contributor.otherFaculty of Pharmacy and Pharmaceutical Industries
dc.contributor.otherBadr University in Cairo BUC
dc.contributor.otherCairo
dc.contributor.otherEgypt; Department of Organic Chemistry
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Science and Arts (MSA)
dc.contributor.otherCairo
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:43Z
dc.date.available2020-01-09T20:40:43Z
dc.date.issued2019
dc.descriptionScopus
dc.description.abstractAim: Design and synthesis of thienopyrimidine derivatives as dual EGFR and VEGFR-2 inhibitors.Material and methods: A series of novel 6,7,8,9-tetrahydro-5H-cyclohepta[4,5]thieno[2,3-d]pyrimidine derivatives with different substituents on C-4 position was synthesized and evaluated for their anticancer activity against MCF-7 cell line. EGFR, VEGFR-2 inhibitory assay, the cell cycle analysis and apoptosis induction ability of the most potent compound 5f were evaluated.Results: Most of the compounds showed moderate to significant anticancer activity. Compound 5f exhibited the most potent anticancer activity being 1.73- and 4.64-folds more potent than erlotinib and doxorubicin, respectively. Compound 5f showed potent EGFR inhibitory activity being 1.18-folds more potent than reference standard erlotinib and it also showed good VEGFR-2 inhibitory activity at the micromolar level with IC 50 value 1.23��M. Compound 5f caused induction of cell cycle arrest at G2/M phase and accumulation of cells in pre-G1 phase. Compound 5f induced cellular apoptosis. � 2019, � 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=17605&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1080/14756366.2019.1593160
dc.identifier.doiPubMed ID 30919701
dc.identifier.issn14756366
dc.identifier.otherhttps://doi.org/10.1080/14756366.2019.1593160
dc.identifier.otherPubMed ID 30919701
dc.identifier.urihttps://t.ly/y6MXy
dc.language.isoEnglishen_US
dc.publisherTaylor and Francis Ltden_US
dc.relation.ispartofseriesJournal of Enzyme Inhibition and Medicinal Chemistry
dc.relation.ispartofseries34
dc.subjectanticancer activityen_US
dc.subjectapoptosisen_US
dc.subjectdesignen_US
dc.subjectEGFRen_US
dc.subjectsynthesisen_US
dc.subjectThieno[2,3-d]pyrimidinesen_US
dc.subjectvandetaniben_US
dc.subjectVEGFR-2en_US
dc.subject3 [(6,7,8,9 tetrahydro 5h cyclohepta[4,5]thieno[2,3 d]pyrimidin 4 yl)oxy]anilineen_US
dc.subject4 (2 chlorophenoxy) 6,7,8,9 tetrahydro 5h cyclohepta[4,5]thieno[2,3 d]pyrimidineen_US
dc.subject4 (4 bromophenoxy) 6,7,8,9 tetrahydro 5h cyclohepta[4,5]thieno[2,3 d]pyrimidineen_US
dc.subject4 (4 chloro 3 methylphenoxy) 6,7,8,9 tetrahydro 5h cyclohepta[4,5]thieno[2,3 d]pyrimidineen_US
dc.subject4 (4 chlorophenoxy) 6,7,8,9 tetrahydro 5h cyclohepta[4,5]thieno[2,3 d]pyrimidineen_US
dc.subject4 (4 fluorophenoxy) 6,7,8,9 tetrahydro 5h cyclohepta[4,5]thieno[2,3 d]pyrimidineen_US
dc.subject4 (4 methoxyphenoxy) 6,7,8,9 tetrahydro 5h cyclohepta[4,5]thieno[2,3 d]pyrimidineen_US
dc.subject4 (4 nitrophenoxy) 6,7,8,9 tetrahydro 5h cyclohepta[4,5]thieno[2,3 d]pyrimidineen_US
dc.subject4 (4 tolyloxy) 6,7,8,9 tetrahydro 5h cyclohepta[4,5]thieno[2,3 d]pyrimidineen_US
dc.subject4 (o tolyloxy) 6,7,8,9 tetrahydro 5h cyclohepta[4,5]thieno[2,3 d]pyrimidineen_US
dc.subject4 [(6,7,8,9 tetrahydro 5h cyclohepta[4,5]thieno[2,3 d]pyrimidin 4 yl)amino]benzenesulfonamideen_US
dc.subject4 [(6,7,8,9 tetrahydro 5h cyclohepta[4,5]thieno[2,3 d]pyrimidin 4 yl)oxy]anilineen_US
dc.subjectantineoplastic agenten_US
dc.subjectdoxorubicinen_US
dc.subjectepidermal growth factor receptoren_US
dc.subjectepidermal growth factor receptor kinase inhibitoren_US
dc.subjecterlotiniben_US
dc.subjectgefitiniben_US
dc.subjectlapatiniben_US
dc.subjectn (4 methylpyrimidin 2 yl) 4 [(6,7,8,9 tetrahydro 5h cyclohepta[4,5]thieno[2,3 d]pyrimidin 4 yl)amino]benzenesulfonamideen_US
dc.subjectn (pyrimidin 2 yl) 4 [(6,7,8,9 tetrahydro 5h cyclohepta[4,5] thieno[2,3 d]pyrimidin 4 yl)amino]benzenesulfonamideen_US
dc.subjectpyrimidine derivativeen_US
dc.subjectunclassified drugen_US
dc.subjectvandetaniben_US
dc.subjectvasculotropin receptor 2en_US
dc.subjectvasculotropin receptor 2 inhibitoren_US
dc.subjectantineoplastic agenten_US
dc.subjectEGFR protein, humanen_US
dc.subjectepidermal growth factor receptoren_US
dc.subjectKDR protein, humanen_US
dc.subjectprotein kinase inhibitoren_US
dc.subjectpyrimidine derivativeen_US
dc.subjectthienopyrimidineen_US
dc.subjectvasculotropin receptor 2en_US
dc.subjectantineoplastic activityen_US
dc.subjectapoptosisen_US
dc.subjectArticleen_US
dc.subjectcarbon nuclear magnetic resonanceen_US
dc.subjectcell cycleen_US
dc.subjectcell cycle arresten_US
dc.subjectcell cycle G2 phaseen_US
dc.subjectcell cycle M phaseen_US
dc.subjectchlorinationen_US
dc.subjectcontrolled studyen_US
dc.subjectdrug designen_US
dc.subjectdrug synthesisen_US
dc.subjectelemental analysisen_US
dc.subjectenzyme inhibitionen_US
dc.subjectheatingen_US
dc.subjecthumanen_US
dc.subjecthuman cellen_US
dc.subjectIC50en_US
dc.subjectMCF-7 cell lineen_US
dc.subjectMTT assayen_US
dc.subjectnucleophilicityen_US
dc.subjectpriority journalen_US
dc.subjectproton nuclear magnetic resonanceen_US
dc.subjectreaction analysisen_US
dc.subjectsubstitution reactionen_US
dc.subjectantagonists and inhibitorsen_US
dc.subjectcell cycleen_US
dc.subjectcell proliferationen_US
dc.subjectchemical structureen_US
dc.subjectchemistryen_US
dc.subjectdose responseen_US
dc.subjectdrug effecten_US
dc.subjectdrug screeningen_US
dc.subjectmetabolismen_US
dc.subjectmolecular dockingen_US
dc.subjectstructure activity relationen_US
dc.subjectsynthesisen_US
dc.subjectAntineoplastic Agentsen_US
dc.subjectApoptosisen_US
dc.subjectCell Cycleen_US
dc.subjectCell Proliferationen_US
dc.subjectDose-Response Relationship, Drugen_US
dc.subjectDrug Screening Assays, Antitumoren_US
dc.subjectErbB Receptorsen_US
dc.subjectHumansen_US
dc.subjectMCF-7 Cellsen_US
dc.subjectMolecular Docking Simulationen_US
dc.subjectMolecular Structureen_US
dc.subjectProtein Kinase Inhibitorsen_US
dc.subjectPyrimidinesen_US
dc.subjectStructure-Activity Relationshipen_US
dc.subjectVascular Endothelial Growth Factor Receptor-2en_US
dc.titleNovel thienopyrimidine derivatives as dual EGFR and VEGFR-2 inhibitors: design, synthesis, anticancer activity and effect on cell cycle profileen_US
dc.typeArticleen_US
dcterms.isReferencedByHunter, T., Blume-Jensen, P., Oncogenic kinase signalling (2001) Nature, 411, pp. 355-365; Laufer, S., Bajorath, J., New frontiers in kinases: second generation inhibitors (2014) J Med Chem, 57, pp. 2167-2168; Antonello, A., Tarozzi, A., Morroni, F., Multitarget-directed drug design strategy: a novel molecule designed to block epidermal growth factor receptor (EGFR) and to exert proapoptotic effects (2006) J Med Chem, 49, pp. 6642-6645; Masuda, H., Zhang, D., Bartholomeusz, C., Role of epidermal growth factor receptor in breast cancer (2012) Breast Cancer Res Treat, 136, pp. 331-345; Zhu, H., Dougherty, U., Robinson, V., EGFR signals downregulate tumor suppressors miR-143 and miR-145 in western diet�promoted murine colon cancer: role of G1 regulators (2011) Mol Cancer Res, 9, pp. 960-975; Nielsen, J.S., Jakobsen, E., H�lund, B., Prognostic significance of p53, Her?2, and EGFR overexpression in borderline and epithelial ovarian cancer (2004) Int J Gynecol Cancer, 14, pp. 1086-1096; Gan, Y., Shi, C., Inge, L., Differential roles of ERK and Akt pathways in regulation of EGFR-mediated signaling and motility in prostate cancer cells (2010) Oncogene, 29, pp. 4947-4958; Tabernero, J., The role of VEGF and EGFR inhibition: implications for combining anti-VEGF and anti-EGFR agents (2007) Mol Cancer Res, 5, pp. 203-220; Folkman, J., D�Amore, P.A., Blood vessel formation: what is its molecular basis? (1996) Cell, 87, pp. 1153-1155; Musumeci, F., Radi, M., Brullo, C., Schenone, S., Vascular endothelial growth factor (VEGF) receptors: drugs and new inhibitors (2012) J Med Chem, 55, pp. 10797-10822; Holmes, K., Roberts, O.L., Thomas, A.M., Cross, M.J., Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition (2007) Cell Signal, 19, pp. 2003-2012; Amin, D.N., Bielenberg, D.R., Lifshits, E., Targeting EGFR activity in blood vessels is sufficient to inhibit tumor growth and is accompanied by an increase in VEGFR-2 dependence in tumor endothelial cells (2008) Microvasc Res, 76, pp. 15-22; Maity, A., Pore, N., Lee, J., Epidermal growth factor receptor transcriptionally up-regulates vascular endothelial growth factor expression in human glioblastoma cells via a pathway involving phosphatidylinositol 3?-kinase and distinct from that induced by hypoxia (2000) Cancer Res, 60, pp. 5879-5886; Garofalo, A., Goossens, L., Lemoine, A., [4-(6,7-Disubstituted quinazolin-4-ylamino)phenyl]carbamic acid esters: a novel series of dual EGFR/VEGFR-2 tyrosine kinase inhibitors (2011) Med Chem Commun, 2, pp. 65-72; Bianco, C., Giovannetti, E., Ciardiello, F., Synergistic antitumor activity of ZD6474, an inhibitor of vascular endothelial growth factor receptor and epidermal growth factor receptor signaling, with gemcitabine and ionizing radiation against pancreatic cancer (2006) Clin Cancer Res, 12, pp. 7099-7107; Le Tourneau, C., Faivre, S., Raymond, E., New developments in multitargeted therapy for patients with solid tumours (2008) Cancer Treat Rev, 34, pp. 37-48; Carlomagno, F., Vitagliano, D., Guida, T., ZD6474, an orally available inhibitor of kdr tyrosine kinase activity, efficiently blocks oncogenic ret kinases (2002) Cancer Res, 62, pp. 7284-7290; Garofalo, A., Goossens, L., Lemoine, A., Quinazoline-urea, new protein kinase inhibitors in treatment of prostate cancer (2010) J Enzyme Inhib Med Chem, 25, pp. 158-171; De Castro Barbosa, M.L., Lima, L.M., Tesch, R., Novel 2-chloro-4-anilino-quinazoline derivatives as EGFR and VEGFR-2 dual inhibitors (2014) Eur J Med Chem, 71, pp. 1-14; Wedge, S.R., Ogilvie, D.J., Dukes, M., ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration (2002) Cancer Res, 62, pp. 4645-4655; Wells, S.A., Gosnell, J.E., Gagel, R.F., Vandetanib for the treatment of patients with locally advanced or metastatic hereditary medullary thyroid Cancer (2010) J Clin Oncol, 28, pp. 767-772; Sarkar, S., Rajput, S., Tripathi, A.K., Mandal, M., Targeted therapy against EGFR and VEGFR using ZD6474 enhances the therapeutic potential of UV-B phototherapy in breast cancer cells (2013) Mol Cancer, 12, pp. 122-139; Sarkar, S., Mazumdar, A., Dash, R., ZD6474, a dual tyrosine kinase inhibitor of EGFR and VEGFR-2, inhibits MAPK/ERK and AKT/PI3-K and induces apoptosis in breast cancer cells (2010) Cancer Biol Ther, 9, pp. 592-603; Ciardiello, F., Caputo, R., Damiano, V., Antitumor effects of ZD6474, a small molecule vascular endothelial growth factor receptor tyrosine kinase inhibitor, with additional activity against epidermal growth factor receptor tyrosine kinase (2003) Clin Cancer Res, 9, pp. 1546-1556; Meyerhardt, J.A., Ancukiewicz, M., Abrams, T.A., Phase I study of cetuximab, irinotecan, and vandetanib (ZD6474) as therapy for patients with previously treated metastastic colorectal cancer (2012) PLoS One, 7; Liu, Y., Qi, M., Hou, S., Risk of rash associated with vandetanib treatment in non-small-cell lung cancer patients: a meta-analysis of 9 randomized controlled trials (2017) Medicine, 96, p. e8345; Abouzid, K., Shouman, S., Design, synthesis and in vitro antitumor activity of 4-aminoquinoline and 4-aminoquinazoline derivatives targeting EGFR tyrosine kinase (2008) Bioorg Med Chem, 16, pp. 7543-7551; Ravez, S., Arsenlis, S., Barczyk, A., Synthesis and biological evaluation of di-aryl urea derivatives as c-Kit inhibitors (2015) Bioorg Med Chem, 23, pp. 7340-7347; Gaber, A.A., Bayoumi, A.H., El-morsy, A.M., Design, synthesis and anticancer evaluation of 1H-pyrazolo[3,4-d]pyrimidine derivatives as potent EGFR WT and EGFR T790M inhibitors and apoptosis inducers (2018) Bioorg Chem, 80, pp. 375-395; Lee, K., Jeong, K.W., Lee, Y., Pharmacophore modeling and virtual screening studies for new VEGFR-2 kinase inhibitors (2010) Eur J Med Chem, 45, pp. 5420-5427; Kassab, A.E., Gedawy, E.M., Synthesis and anticancer activity of novel 2-pyridyl hexahyrocyclooctathieno[2,3-d]pyrimidine derivatives (2013) Eur J Med Chem, 63, pp. 224-230; Adly, M.E., Gedawy, E.M., El-Malah, A.A., El-Telbany, F.A., Synthesis of novel thieno[2,3-d]pyrimidine derivatives and evaluation of their cytotoxicity and EGFR inhibitory activity (2018) Anticancer Agents Med Chem, 18, pp. 747-756; Arya, V.P., Synthesis of new heterocycles. 6. syntheses of certain novel condensed thiophenes (1972) Indian J of Chem, 10, pp. 1141-1150; Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays (1983) J Immunol Methods, 65, pp. 55-63; Gewald, K., Heterocyclen aus CH?aciden Nitrilen, VII. 2?amino?thiophene aus ??oxo?mercaptanen und methylenaktiven nitrilen (1965) Chem Ber, 98, pp. 3571-3577; Gewald, K., Schinke, E., B�ttcher, H., Heterocyclen aus CH?aciden nitrilen, VIII. 2?amino?thiophene aus methylenaktiven nitrilen, carbonylverbindungen und Schwefel (1966) Chem Ber, 99, pp. 94-100; Sabnis, R.W., Rangnekar, D.W., Sonawane, N.D., 2?Aminothiophenes by the Gewald reaction (1999) J Heterocycl Chem, 36, pp. 333-345; Borzilleri, R.M., Bhide, R.S., Barrish, J.C., Discovery and evaluation of N -cyclopropyl-2,4-difluoro-5-((2-(pyridin-2-ylamino)thiazol-5-ylmethyl)amino)benzamide (BMS-605541), a Selective and orally efficacious inhibitor of vascular endothelial growth factor receptor-2 (2006) J Med Chem, 49, pp. 3766-3769; Garofalo, A., Farce, A., Ravez, S., Synthesis and structure�activity relationships of (aryloxy)quinazoline ureas as novel, potent, and selective vascular endothelial growth factor receptor-2 inhibitors (2012) J Med Chem, 55, pp. 1189-1204; McTigue, M., Murray, B.W., Chen, J.H., Molecular conformations, interactions, and properties associated with drug efficiency and clinical performance among VEGFR TK inhibitors (2012) Proc Natl Acad Sci USA, 109, pp. 18281-18289
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_128.png
Size:
2.73 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
ienz-34-1593160.pdf
Size:
2.04 MB
Format:
Adobe Portable Document Format
Description: