Metabolomics reveals impact of seven functional foods on metabolic pathways in a gut microbiota model
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | von Bergen, M | |
dc.contributor.author | Wessjohann, L.A | |
dc.contributor.author | Ehrlich, A | |
dc.contributor.author | Rolle-Kampczyk, U | |
dc.contributor.author | Serena Schäpe, S | |
dc.contributor.author | Fritz-Wallace, K | |
dc.contributor.author | Jehmlich, N | |
dc.contributor.author | el Shorbagi, M | |
dc.contributor.author | Sallam, I.E | |
dc.contributor.author | Abdelwareth, A | |
dc.contributor.author | Farag, M.A | |
dc.date.accessioned | 2020-02-16T10:31:53Z | |
dc.date.available | 2020-02-16T10:31:53Z | |
dc.date.issued | 2020-05 | |
dc.description | SCOPUS | en_US |
dc.description.abstract | Functional food defined as dietary supplements that in addition to their nutritional values, can beneficially modulate body functions becomes more and more popular but the reaction of the intestinal microbiota to it is largely unknown. In order to analyse the impact of functional food on the microbiota itself it is necessary to focus on the physiology of the microbiota, which can be assessed in a whole by untargeted metabolomics. Obtaining a detailed description of the gut microbiota reaction to food ingredients can be a key to understand how these organisms regulate and bioprocess many of these food components. Extracts prepared from seven chief functional foods, namely green tea, black tea, Opuntia ficus-indica (prickly pear, cactus pear), black coffee, green coffee, pomegranate, and sumac were administered to a gut consortium culture encompassing 8 microbes which are resembling, to a large extent, the metabolic activities found in the human gut. Samples were harvested at 0.5 and 24 h post addition of functional food extract and from blank culture in parallel and analysed for its metabolites composition using gas chromatography coupled to mass spectrometry detection (GC-MS). A total of 131 metabolites were identified belonging to organic acids, alcohols, amino acids, fatty acids, inorganic compounds, nitrogenous compounds, nucleic acids, phenolics, steroids and sugars, with amino acids as the most abundant class in cultures. Considering the complexity of such datasets, multivariate data analyses were employed to classify samples and investigate how functional foods influence gut microbiota metabolisms. Results from this study provided a first insights regarding how functional foods alter gut metabolism through either induction or inhibition of certain metabolic pathways, i.e. GABA production in the presence of higher acidity induced by functional food metabolites such as polyphenols. Likewise, functional food metabolites i.e., purine alkaloids acted themselves as direct substrate in microbiota metabolism. © 2020 | en_US |
dc.description.sponsorship | Cairo University Deutsche Forschungsgemeinschaft | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=19700168304&tip=sid&clean=0 | |
dc.identifier.citation | Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Nielsen, T., (...), Zoetendal, E. A human gut microbial gene catalogue established by metagenomic sequencing (Open Access) (2010) Nature, 464 (7285), pp. 59-65. Cited 4911 times. http://www.nature.com/nature/index.html doi: 10.1038/nature08821 View at Publisher 2 Hasan, N., Yang, H. Factors affecting the composition of the gut microbiota, and its modulation (Open Access) (2019) PeerJ, 2019 (8), art. no. 7502. Cited 3 times. https://peerj.com/ doi: 10.7717/peerj.7502 View at Publisher 3 Li, Z. (2018) Gut microbiota-mediated biotransformation of food components: the key for their biological functions. Abstracts of Papers of the American Chemical Society 256. 4 Tengeler, A.C., Kozicz, T., Kiliaan, A.J. Relationship between diet, the gut microbiota, and brain function (2018) Nutrition Reviews, 76 (8), pp. 603-617. Cited 9 times. http://nutritionreviews.oxfordjournals.org/ doi: 10.1093/nutrit/nuy016 View at Publisher 5 Pushalkar, S., Ji, X., Li, Y., Estilo, C., Yegnanarayana, R., Singh, B., Li, X., (...), Saxena, D. Comparison of oral microbiota in tumor and non-tumor tissues of patients with oral squamous cell carcinoma. (2012) BMC microbiology, 12. Cited 86 times. 6 Rowland, I.R. The role of the gastrointestinal microbiota in colorectal cancer (2009) Current Pharmaceutical Design, 15 (13), pp. 1524-1527. Cited 85 times. http://docserver.ingentaconnect.com/deliver/connect/ben/13816128/v15n13/s6.pdf?expires=1249055533&id=51431815&titleid=3901&accname=Elsevier+Bibliographic+Databases&checksum=1A7A64D55ED57477CE6B1DBB8561C1CF doi: 10.2174/138161209788168191 View at Publisher 7 Mayer, C., Brachhold, K. Molecular Nutrition–From Gut Microbiota to Metabolomics and Inter-Individual Nutrition (Open Access) (2019) Molecular Nutrition and Food Research, 63 (2), art. no. 1970005. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1613-4133 doi: 10.1002/mnfr.201970005 View at Publisher 8 Nicoletti, M. Nutraceuticals and botanicals: Overview and perspectives (2012) International Journal of Food Sciences and Nutrition, 63 (SUPPL. 1), pp. 2-6. Cited 46 times. doi: 10.3109/09637486.2011.628012 View at Publisher 9 Lentle, R.G., Janssen, P.W.M. Manipulating digestion with foods designed to change the physical characteristics of digesta (2010) Critical Reviews in Food Science and Nutrition, 50 (2), pp. 130-145. Cited 41 times. doi: 10.1080/10408390802248726 View at Publisher 10 Laparra, J.M., Sanz, Y. Interactions of gut microbiota with functional food components and nutraceuticals (2010) Pharmacological Research, 61 (3), pp. 219-225. Cited 319 times. doi: 10.1016/j.phrs.2009.11.001 View at Publisher 11 Lee, H.C., Jenner, A.M., Low, C.S., Lee, Y.K. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota (2006) Research in Microbiology, 157 (9), pp. 876-884. Cited 362 times. doi: 10.1016/j.resmic.2006.07.004 View at Publisher 12 Guthrie, L., Wolfson, S., Kelly, L. The human gut chemical landscape predicts microbe-mediated biotransformation of foods and drugs (Open Access) (2019) eLife, 8, art. no. e42866. Cited 5 times. https://elifesciences.org/download/aHR0cHM6Ly9jZG4uZWxpZmVzY2llbmNlcy5vcmcvYXJ0aWNsZXMvNDI4NjYvZWxpZmUtNDI4NjYtdjEucGRm/elife-42866-v1.pdf?_hash=S%2FVipnfMO2RmGVGK3PnTzet%2F8friUeDU8zLLeaWruP4%3D doi: 10.7554/eLife.42866 View at Publisher 13 Ozdal, T., Sela, D.A., Xiao, J., Boyacioglu, D., Chen, F., Capanoglu, E. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility (Open Access) (2016) Nutrients, 8 (2), art. no. 78. Cited 155 times. http://www.mdpi.com/2072-6643/8/2/78/pdf doi: 10.3390/nu8020078 View at Publisher 14 Thursby, E., Juge, N. Introduction to the human gut microbiota (Open Access) (2017) Biochemical Journal, 474 (11), pp. 1823-1836. Cited 222 times. http://www.biochemj.org/content/ppbiochemj/474/11/1823.full.pdf doi: 10.1042/BCJ20160510 View at Publisher 15 David, L.A., Maurice, C.F., Carmody, R.N., Gootenberg, D.B., Button, J.E., Wolfe, B.E., Ling, A.V., (...), Turnbaugh, P.J. Diet rapidly and reproducibly alters the human gut microbiome (2014) Nature, 505 (7484), pp. 559-563. Cited 2880 times. doi: 10.1038/nature12820 View at Publisher 16 Yu, Z.-T., Chen, C., Kling, D.E., Liu, B., McCoy, J.M., Merighi, M., Heidtman, M., (...), Newburg, D.S. The principal fucosylated oligosaccharides of human milk exhibit prebiotic properties on cultured infant microbiota (Open Access) (2013) Glycobiology, 23 (2), pp. 169-177. Cited 103 times. doi: 10.1093/glycob/cws138 View at Publisher 17 Farag, M.A., El-Kersh, D.M., Ehrlich, A., Choucry, M.A., El-Seedi, H., Frolov, A., Wessjohann, L.A. Variation in Ceratonia siliqua pod metabolome in context of its different geographical origin, ripening stage and roasting process (2019) Food Chemistry, 283, pp. 675-687. Cited 4 times. www.elsevier.com/locate/foodchem doi: 10.1016/j.foodchem.2018.12.118 View at Publisher 18 Farag, M.A., Khattab, A.R., Ehrlich, A., Kropf, M., Heiss, A.G., Wessjohann, L.A. Gas Chromatography/Mass Spectrometry-Based Metabolite Profiling of Nutrients and Antinutrients in Eight Lens and Lupinus Seeds (Fabaceae) (2018) Journal of Agricultural and Food Chemistry, 66 (16), pp. 4267-4280. Cited 9 times. http://pubs.acs.org/journal/jafcau doi: 10.1021/acs.jafc.8b00369 View at Publisher 19 Becker, N., Kunath, J., Loh, G., Blaut, M. Human intestinal microbiota: Characterization of a simplified and stable gnotobiotic rat model (Open Access) (2011) Gut Microbes, 2 (1). Cited 67 times. http://www.landesbioscience.com/journals/gutmicrobes/BarrattGUT2-1.pdf doi: 10.4161/gmic.2.1.14651 View at Publisher 20 Rodriguez-Amaya, D.B. Natural food pigments and colorants (2016) Current Opinion in Food Science, 7, pp. 20-26. Cited 85 times. http://www.journals.elsevier.com/current-opinion-in-food-science/ doi: 10.1016/j.cofs.2015.08.004 View at Publisher 21 Caprioli, G., Navarini, L., Cortese, M., Ricciutelli, M., Torregiani, E., Vittori, S., Sagratini, G. Quantification of isoflavones in coffee by using solid phase extraction (SPE) and high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS) (2016) Journal of Mass Spectrometry, pp. 698-703. Cited 4 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1096-9888b doi: 10.1002/jms.3802 View at Publisher 22 Svilaas, A., Sakhi, A.K., Andersen, L.F., Svilaas, T., Ström, E.C., Jacobs Jr., D.R., Ose, L., (...), Blomhoff, R. Intakes of Antioxidants in Coffee, Wine, and Vegetables Are Correlated with Plasma Carotenoids in Humans (2004) Journal of Nutrition, 134 (3), pp. 562-567. Cited 268 times. View at Publisher 23 Peng, X., Zhou, R., Wang, B., Yu, X., Yang, X., Liu, K., Mi, M. Effect of green tea consumption on blood pressure: A meta-analysis of 13 randomized controlled trials (Open Access) (2014) Scientific Reports, 4, art. no. 6251. Cited 40 times. www.nature.com/srep/index.html doi: 10.1038/srep06251 View at Publisher 24 Chaudhary, N., Bhardwaj, J., Hwang, J.-H., Seo, H.-J., Kim, M.-Y., Shin, T.-S., Wee, J.-H., (...), Kim, J.-D. Anti-hyperlipidemic and fat pad lowering effect of standardized tea seed cake extract in mice fed high-fat and high-carbohydrate diet (2015) Biotechnology and Bioprocess Engineering, 20 (1), pp. 157-167. Cited 2 times. http://www.springerlink.com/content/1226-8372 doi: 10.1007/s12257-014-0487-5 View at Publisher 25 Forester, S.C., Lambert, J.D. The role of antioxidant versus pro-oxidant effects of green tea polyphenols in cancer prevention (2011) Molecular Nutrition and Food Research, 55 (6), pp. 844-854. Cited 156 times. doi: 10.1002/mnfr.201000641 View at Publisher 26 Antunes-Ricardo, M., Gutiérrez-Uribe, J.A., Martínez-Vitela, C., Serna-Saldívar, S.O. Topical anti-inflammatory effects of isorhamnetin glycosides isolated from opuntia ficus-indica (Open Access) (2015) BioMed Research International, 2015, art. no. 847320. Cited 27 times. http://www.hindawi.com/journals/biomed/ doi: 10.1155/2015/847320 View at Publisher 27 Bassiri-Jahromi, S. Punica granaturn (Pomegranate) activity in health promotion and cancer prevention (Open Access) (2018) Oncology Reviews, 12 (1), pp. 1-7. Cited 16 times. https://www.oncologyreviews.org/index.php/or/article/view/345/324 doi: 10.4081/oncol.2018.345 View at Publisher 28 Shidfar, F., Rahideh, S.T., Rajab, A., Khandozi, N., Hosseini, S., Shidfar, S., Mojab, F. The effect of Sumac Rhuscoriaria L. Powder on serum glycemic status, ApoB, ApoA-I and total antioxidant capacity in type 2 diabetic patients (2014) Iranian Journal of Pharmaceutical Research, 13 (4), pp. 1249-1255. Cited 12 times. http://ijpr.sbmu.ac.ir/jufile?c2hvd1BERj0xNTg1Jl9hY3Rpb249c2hvd1BERiZhcnRpY2xlPTE1ODUmX29iPWJjODdhYWEwM2NmNGU0ZjAyM2NlMGFlZmJhODY4Yjkx 29 Broeckling, C.D., Reddy, I.R., Duran, A.L., Zhao, X., Sumner, L.W. MET-IDEA: Data extraction tool for mass spectrometry-based metabolomics (2006) Analytical Chemistry, 78 (13), pp. 4334-4341. Cited 188 times. doi: 10.1021/ac0521596 View at Publisher 30 Farag, M.A., Ammar, N.M., Kholeif, T.E., Metwally, N.S., El-Sheikh, N.M., Wessjohann, L.A., Abdel-Hamid, A.Z. Rats' urinary metabolomes reveal the potential roles of functional foods and exercise in obesity management (2017) Food and Function, 8 (3), pp. 985-996. Cited 5 times. http://www.rsc.org/Publishing/Journals/FO/about.asp doi: 10.1039/c6fo01753c View at Publisher 31 Diether, N.E., Willing, B.P. Microbial fermentation of dietary protein: An important factor in diet–microbe–host interaction (Open Access) (2019) Microorganisms, 7 (1), art. no. 19. Cited 15 times. https://www.mdpi.com/2076-2607/7/1/19/pdf doi: 10.3390/microorganisms7010019 View at Publisher 32 Suvorova, I.A., Ravcheev, D.A., Gelfand, M.S. Regulation and evolution of malonate and propionate catabolism in proteobacteria (Open Access) (2012) Journal of Bacteriology, 194 (12), pp. 3234-3240. Cited 17 times. http://jb.asm.org/content/194/12/3234.full.pdf doi: 10.1128/JB.00163-12 View at Publisher 33 Farag, M.A. Comparative mass spectrometry & nuclear magnetic resonance metabolomic approaches for nutraceuticals quality control analysis: A brief review (2014) Recent Patents on Biotechnology, 8 (1), pp. 17-24. Cited 28 times. http://www.benthamdirect.org/pages/all_b_bypublication.php doi: 10.2174/1389201014666131218125035 View at Publisher 34 Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., Tuohy, K. Gut microbiota functions: metabolism of nutrients and other food components (Open Access) (2018) European Journal of Nutrition, 57 (1). Cited 195 times. http://www.springerlink.com/content/1436-6207 doi: 10.1007/s00394-017-1445-8 View at Publisher 35 Teufel, R., Mascaraque, V., Ismail, W., Voss, M., Perera, J., Eisenreich, W., Haehnel, W., (...), Fuchs, G. Bacterial phenylalanine and phenylacetate catabolic pathway revealed (Open Access) (2010) Proceedings of the National Academy of Sciences of the United States of America, 107 (32), pp. 14390-14395. Cited 159 times. http://www.pnas.org/content/107/32/14390.full.pdf+html doi: 10.1073/pnas.1005399107 View at Publisher 36 Zareian, M., Ebrahimpour, A., Bakar, F.A., Mohamed, A.K.S., Forghani, B., Ab-Kadir, M.S.B., Saari, N. A glutamic acid-producing lactic acid bacteria isolated from malaysian fermented foods (Open Access) (2012) International Journal of Molecular Sciences, 13 (5), pp. 5482-5497. Cited 27 times. http://www.mdpi.com/1422-0067/13/5/5482/pdf doi: 10.3390/ijms13055482 View at Publisher 37 Chapot-Chartier, M.-P., Kulakauskas, S. Cell wall structure and function in lactic acid bacteria (Open Access) (2014) Microbial Cell Factories, 13, art. no. S9. Cited 86 times. http://www.microbialcellfactories.com/content/13/S1/S9 doi: 10.1186/1475-2859-13-S1-S9 View at Publisher 38 Lin, R., Liu, W., Piao, M., Zhu, H. A review of the relationship between the gut microbiota and amino acid metabolism (2017) Amino Acids, 49 (12), pp. 2083-2090. Cited 35 times. link.springer.de/link/service/journals/00726/index.htm doi: 10.1007/s00726-017-2493-3 View at Publisher 39 Heiss, C.N., Olofsson, L.E. Gut Microbiota-Dependent Modulation of Energy Metabolism (Open Access) (2018) Journal of Innate Immunity, 10 (3), pp. 163-171. Cited 22 times. http://content.karger.com/ProdukteDB/produkte.asp?Aktion=JournalHome&ProduktNr=234234&ContentOnly=false doi: 10.1159/000481519 View at Publisher 40 Tottey, W., Feria-Gervasio, D., Gaci, N., Laillet, B., Pujos, E., Martin, J.-F., Sebedio, J.-L., (...), Brugère, J.-F. Colonic transit time is a driven force of the gut microbiota composition and metabolism: In vitro evidence (Open Access) (2017) Journal of Neurogastroenterology and Motility, 23 (1), pp. 124-134. Cited 23 times. http://www.jnmjournal.org/journal/download_pdf.php?doi=10.5056/jnm16042 doi: 10.5056/jnm16042 View at Publisher 41 Gill, T., Brooks, S.R., Rosenbaum, J.T., Asquith, M., Colbert, R.A. Novel Inter-omic Analysis Reveals Relationships Between Diverse Gut Microbiota and Host Immune Dysregulation in HLA–B27–Induced Experimental Spondyloarthritis (2019) Arthritis and Rheumatology, 71 (11), pp. 1849-1857. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2326-5205 doi: 10.1002/art.41018 View at Publisher 42 Zhuang, X., Tian, Z., Li, L., Zeng, Z., Chen, M., Xiong, L. Fecal microbiota alterations associated with diarrhea-predominant irritable bowel syndrome (Open Access) (2018) Frontiers in Microbiology, 9 (JUL), art. no. 1600. Cited 11 times. https://www.frontiersin.org/articles/10.3389/fmicb.2018.01600/full doi: 10.3389/fmicb.2018.01600 View at Publisher 43 Cerdó, T., Ruiz, A., Acuña, I., Jáuregui, R., Jehmlich, N., Haange, S.-B., von Bergen, M., (...), Campoy, C. Gut microbial functional maturation and succession during human early life (2018) Environmental Microbiology, 20 (6), pp. 2160-2177. Cited 8 times. http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1462-2920 doi: 10.1111/1462-2920.14235 View at Publisher 44 Louis, P., Flint, H.J. Formation of propionate and butyrate by the human colonic microbiota (2017) Environmental Microbiology, 19 (1), pp. 29-41. Cited 203 times. http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1462-2920 doi: 10.1111/1462-2920.13589 View at Publisher 45 Hou, C.W., Jeng, K.C., Chen, Y.S. Enhancement of fermentation process in Pu-Erh tea by tea-leaf extract (2010) Journal of Food Science, 75 (1), pp. H44-H48. Cited 22 times. doi: 10.1111/j.1750-3841.2009.01441.x View at Publisher 46 Zhao, M., Ma, Y., Wei, Z.-Z., Yuan, W.-X., Li, Y.-L., Zhang, C.-H., Xue, X.-T., (...), Zhou, H.-J. Determination and comparison of γ-aminobutyric acid (GABA) content in Pu-erh and other types of Chinese tea (2011) Journal of Agricultural and Food Chemistry, 59 (8), pp. 3641-3648. Cited 40 times. doi: 10.1021/jf104601v View at Publisher 47 Martin, C.R., Osadchiy, V., Kalani, A., Mayer, E.A. The Brain-Gut-Microbiome Axis (Open Access) (2018) Cellular and Molecular Gastroenterology and Hepatology, 6 (2), pp. 133-148. Cited 70 times. http://www.journals.elsevier.com/cellular-and-molecular-gastroenterology-and-hepatology/ doi: 10.1016/j.jcmgh.2018.04.003 View at Publisher 48 Sakanaka, A., Kuboniwa, M., Hashino, E., Bamba, T., Fukusaki, E., Amano, A. Distinct signatures of dental plaque metabolic byproducts dictated by periodontal inflammatory status (Open Access) (2017) Scientific Reports, 7, art. no. 42818. Cited 14 times. www.nature.com/srep/index.html doi: 10.1038/srep42818 View at Publisher 49 Mu, C., Yang, Y., Luo, Z., Guan, L., Zhu, W. The colonic microbiome and epithelial transcriptome are altered in rats fed a high-protein diet compared with a normal-protein diet (Open Access) (2016) Journal of Nutrition, 146 (3), pp. 474-483. Cited 39 times. http://jn.nutrition.org/content/146/3/474.full.pdf doi: 10.3945/jn.115.223990 View at Publisher 50 Inouye, M., Pardee, A.B. Requirement of polyamines for bacterial division. (1970) Journal of Bacteriology, 101 (3), pp. 770-776. Cited 14 times. 51 Tofalo, R., Cocchi, S., Suzzi, G. Polyamines and gut microbiota (Open Access) (2019) Frontiers in Nutrition, 6, art. no. 16. Cited 9 times. journal.frontiersin.org/journal/nutrition doi: 10.3389/fnut.2019.00016 View at Publisher 52 Tassoni, A., Awad, N., Griffiths, G. Effect of ornithine decarboxylase and norspermidine in modulating cell division in the green alga Chlamydomonas reinhardtii (2018) Plant Physiology and Biochemistry, 123, pp. 125-131. Cited 3 times. http://www.journals.elsevier.com/plant-physiology-and-biochemistry/ doi: 10.1016/j.plaphy.2017.12.014 View at Publisher 53 Gao, K., Pi, Y., Peng, Y., Mu, C.-L., Zhu, W.-Y. Time-course responses of ileal and fecal microbiota and metabolite profiles to antibiotics in cannulated pigs (2018) Applied Microbiology and Biotechnology, 102 (5), pp. 2289-2299. Cited 15 times. link.springer.de/link/service/journals/00253/index.htm doi: 10.1007/s00253-018-8774-2 View at Publisher 54 Collins, J., Robinson, C., Danhof, H., Knetsch, C.W., Van Leeuwen, H.C., Lawley, T.D., Auchtung, J.M., (...), Britton, R.A. Dietary trehalose enhances virulence of epidemic Clostridium difficile (2018) Nature, 553 (7688), pp. 291-294. Cited 74 times. http://www.nature.com/nature/index.html doi: 10.1038/nature25178 View at Publisher 55 Albert, K., Rani, A., Sela, D.A. The comparative genomics of Bifidobacterium callitrichos reflects dietary carbohydrate utilization within the common marmoset gut (Open Access) (2018) Microbial genomics, 4 (6). Cited 5 times. doi: 10.1099/mgen.0.000183 View at Publisher 56 Lee, H.-J., Yoon, Y.-S., Lee, S.-J. Mechanism of neuroprotection by trehalose: Controversy surrounding autophagy induction (Open Access) (2018) Cell Death and Disease, 9 (7), art. no. 712. Cited 18 times. http://www.nature.com/cddis/marketing/index.html doi: 10.1038/s41419-018-0749-9 View at Publisher 57 Felice, V.D., Quigley, E.M., Sullivan, A.M., O'Keeffe, G.W., O'Mahony, S.M. Microbiota-gut-brain signalling in Parkinson's disease: Implications for non-motor symptoms (2016) Parkinsonism and Related Disorders, 27, pp. 1-8. Cited 63 times. www.elsevier.com/locate/parkreldis doi: 10.1016/j.parkreldis.2016.03.012 View at Publisher 58 Bernalier-Donadille, A. Fermentative metabolism by the human gut microbiota (2010) Gastroenterologie Clinique et Biologique, 34 (SUPPL. 1), pp. S16-S22. Cited 36 times. doi: 10.1016/S0399-8320(10)70016-6 View at Publisher 59 Nghiem, N.P., Kleff, S., Schwegmann, S. Succinic acid: Technology development and commercialization (Open Access) (2017) Fermentation, 3 (2), art. no. 3020026. Cited 22 times. https://www.mdpi.com/2311-5637/3/2/26/pdf doi: 10.3390/fermentation3020026 View at Publisher 60 Liu, Y.-P., Zheng, P., Sun, Z.-H., Ni, Y., Dong, J.-J., Zhu, L.-L. Economical succinic acid production from cane molasses by Actinobacillus succinogenes (2008) Bioresource Technology, 99 (6), pp. 1736-1742. Cited 186 times. doi: 10.1016/j.biortech.2007.03.044 View at Publisher 61 Guettler, M.V., Rumler, D., Jain, M.K. Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine 1umen (Open Access) (1999) International Journal of Systematic Bacteriology, 49 (1), pp. 207-216. Cited 253 times. doi: 10.1099/00207713-49-1-207 View at Publisher 62 Connors, J., Dawe, N., Van Limbergen, J. The role of succinate in the regulation of intestinal inflammation (Open Access) (2019) Nutrients, 11 (1), art. no. 25. Cited 6 times. https://www.mdpi.com/2072-6643/11/1/25/pdf doi: 10.3390/nu11010025 View at Publisher 63 Detman, A., Mielecki, D., Chojnacka, A., Salamon, A., Błaszczyk, M.K., Sikora, A. Cell factories converting lactate and acetate to butyrate: Clostridium butyricum and microbial communities from dark fermentation bioreactors (Open Access) (2019) Microbial Cell Factories, 18 (1), art. no. 36. Cited 7 times. http://www.microbialcellfactories.com/home/ doi: 10.1186/s12934-019-1085-1 View at Publisher 64 Behera, S.S., Ray, R.C., Zdolec, N. Lactobacillus plantarum with Functional Properties: An Approach to Increase Safety and Shelf-Life of Fermented Foods (Open Access) (2018) BioMed Research International, 2018, art. no. 9361614. Cited 24 times. http://www.hindawi.com/journals/biomed/ doi: 10.1155/2018/9361614 View at Publisher 65 Samuel, K.G., Wang, J., Yue, H.Y., Wu, S.G., Zhang, H.J., Duan, Z.Y., Qi, G.H. Effects of dietary gallic acid supplementation on performance, antioxidant status, and jejunum intestinal morphology in broiler chicks (Open Access) (2017) Poultry Science, 96 (8), pp. 2768-2775. Cited 9 times. http://www.oxfordjournals.org/our_journals/ps/ doi: 10.3382/ps/pex091 View at Publisher 66 Kang, J., Li, Q., Liu, L., Jin, W., Wang, J., Sun, Y. The specific effect of gallic acid on Escherichia coli biofilm formation by regulating pgaABCD genes expression (2018) Applied Microbiology and Biotechnology, 102 (4), pp. 1837-1846. Cited 6 times. link.springer.de/link/service/journals/00253/index.htm doi: 10.1007/s00253-017-8709-3 View at Publisher 67 Gwiazdowska, D., Juś, K., Jasnowska-Małecka, J., Kluczyńska, K. The impact of polyphenols on Bifidobacterium growth (2015) Acta Biochimica Polonica, 62 (4), pp. 895-901. Cited 13 times. http://www.actabp.pl/pdf/4_2015/2015_1154.pdf doi: 10.18388/abp.2015_1154 View at Publisher 68 Scott Lee, J., Wang, R.X., Alexeev, E.E., Lanis, J.M., Battista, K.D., Glover, L.E., Colgan, S.P. Hypoxanthine is a checkpoint stress metabolite in colonic epithelial energy modulation and barrier function (Open Access) (2018) Journal of Biological Chemistry, 293 (16), pp. 6039-6051. Cited 8 times. http://www.jbc.org/content/293/16/6039.full.pdf doi: 10.1074/jbc.RA117.000269 View at Publisher 69 Cheng, W., Lu, J., Lin, W., Wei, X., Li, H., Zhao, X., Jiang, A., (...), Yuan, J. Effects of a galacto-oligosaccharide-rich diet on fecal microbiota and metabolite profiles in mice (2018) Food and Function, 9 (3), pp. 1612-1620. Cited 9 times. http://pubs.rsc.org/en/journals/journal/fo doi: 10.1039/c7fo01720k View at Publisher 70 Lyu, J., Liu, X., Bi, J.-F., Jiao, Y., Wu, X.-Y., Ruan, W. Characterization of Chinese white-flesh peach cultivars based on principle component and cluster analysis (2017) Journal of Food Science and Technology, 54 (12), pp. 3818-3826. Cited 2 times. http://www.springerlink.com/content/121580/ doi: 10.1007/s13197-017-2788-0 View at Publisher 71 Farag, M.A., Fekry, M.I., Al-Hammady, M.A., Khalil, M.N., El-Seedi, H.R., Meyer, A., Porzel, A., (...), Wessjohann, L.A. Cytotoxic effects of Sarcophyton sp. soft corals — Is there a correlation to their NMR fingerprints? (Open Access) (2017) Marine Drugs, 15 (7), art. no. 211. Cited 13 times. http://www.mdpi.com/1660-3397/15/7/211/pdf doi: 10.3390/md15070211 View at Publisher 72 Farag, M.A., Maamoun, A.A., Meyer, A., Wessjohann, L.A. Salicylic acid and its derivatives elicit the production of diterpenes and sterols in corals and their algal symbionts: a metabolomics approach to elicitor SAR (2018) Metabolomics, 14 (10), art. no. 127. Cited 2 times. http://www.kluweronline.com/issn/1573-3890/ doi: 10.1007/s11306-018-1416-y View at Publisher 73 Wiklund, S., Johansson, E., Sjöström, L., Mellerowicz, E.J., Edlund, U., Shockcor, J.P., Gottfries, J., (...), Trygg, J. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models (2008) Analytical Chemistry, 80 (1), pp. 115-122. Cited 758 times. doi: 10.1021/ac0713510 View at Publisher 74 Peña-Soler, E., Fernandez, F.J., López-Estepa, M., Garces, F., Richardson, A.J., Quintana, J.F., Rudd, K.E., (...), Cristina Vega, M. Structural analysis and mutant growth properties reveal distinctive enzymatic and cellular roles for the three major L-alanine transaminases of Escherichia coli (Open Access) (2014) PLoS ONE, 9 (7), art. no. e102139. Cited 4 times. http://www.plosone.org/article/fetchObject.action?uri=info%3Adoi%2F10.1371%2Fjournal.pone.0102139&representation=PDF doi: 10.1371/journal.pone.0102139 View at Publisher 75 Biggs, M.B., Medlock, G.L., Moutinho, T.J., Lees, H.J., Swann, J.R., Kolling, G.L., Papin, J.A. Systems-level metabolism of the altered Schaedler flora, a complete gut microbiota (Open Access) (2017) ISME Journal, 11 (2), pp. 426-438. Cited 15 times. http://www.nature.com/ismej/marketing/aims_scope.html doi: 10.1038/ismej.2016.130 View at Publisher 76 Tomas-Barberan, F., García-Villalba, R., Quartieri, A., Raimondi, S., Amaretti, A., Leonardi, A., Rossi, M. In vitro transformation of chlorogenic acid by human gut microbiota (2014) Molecular Nutrition and Food Research, 58 (5), pp. 1122-1131. Cited 63 times. doi: 10.1002/mnfr.201300441 View at Publisher 77 Chen, H., Hayek, S., Rivera Guzman, J., Gillitt, N.D., Ibrahim, S.A., Jobin, C., Sang, S. The Microbiota Is Essential for the Generation of Black Tea Theaflavins-Derived Metabolites (Open Access) (2012) PLoS ONE, 7 (12), art. no. e51001. Cited 30 times. http://www.plosone.org/article/fetchObjectAttachment.action?uri=info%3Adoi%2F10.1371%2Fjournal.pone.0051001&representation=PDF doi: 10.1371/journal.pone.0051001 View at Publisher 78 Strandwitz, P., Kim, K.H., Terekhova, D., Liu, J.K., Sharma, A., Levering, J., McDonald, D., (...), Lewis, K. GABA-modulating bacteria of the human gut microbiota (2019) Nature Microbiology, 4 (3), pp. 396-403. Cited 42 times. www.nature.com/nmicrobiol/ doi: 10.1038/s41564-018-0307-3 View at Publisher 79 Soini, J., Falschlehner, C., Liedert, C., Bernhardt, J., Vuoristo, J., Neubauer, P. Norvaline is accumulated after a down-shift of oxygen in Escherichia coli W3110 (Open Access) (2008) Microbial Cell Factories, 7, art. no. 30. Cited 52 times. doi: 10.1186/1475-2859-7-30 | en_US |
dc.identifier.doi | https://doi.org/10.1016/j.jare.2020.01.001 | |
dc.identifier.issn | 20901232 | |
dc.identifier.other | https://doi.org/10.1016/j.jare.2020.01.001 | |
dc.identifier.uri | https://t.ly/AZRXm | |
dc.language.iso | en_US | en_US |
dc.publisher | ELSEVIER SCIENCE BV | en_US |
dc.relation.ispartofseries | Journal of Advanced Research;Volume 23, May 2020, Pages 47-59 | |
dc.subject | Metabolomics | en_US |
dc.subject | Gut microbiota | en_US |
dc.subject | GCMS | en_US |
dc.subject | Functional foods | en_US |
dc.subject | Chemometrics | en_US |
dc.title | Metabolomics reveals impact of seven functional foods on metabolic pathways in a gut microbiota model | en_US |
dc.type | Article | en_US |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 51 B
- Format:
- Item-specific license agreed upon to submission
- Description: