Effect of oxylipins, terpenoid precursors and wounding on soft corals' secondary metabolism as analyzed via UPLC/MS and chemometrics
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Farag M.A. | |
dc.contributor.author | Westphal H. | |
dc.contributor.author | Eissa T.F. | |
dc.contributor.author | Wessjohann L.A. | |
dc.contributor.author | Meyer A. | |
dc.contributor.other | Department of Pharmacognosy | |
dc.contributor.other | College of Pharmacy | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Kasr El Aini St. | |
dc.contributor.other | Cairo | |
dc.contributor.other | 11562 | |
dc.contributor.other | Egypt; Department of Chemistry | |
dc.contributor.other | School of Sciences and Engineering | |
dc.contributor.other | American University in Cairo | |
dc.contributor.other | New Cairo | |
dc.contributor.other | 11835 | |
dc.contributor.other | Egypt; Leibniz Centre for Tropical Marine Research | |
dc.contributor.other | Fahrenheit Str.6 | |
dc.contributor.other | Bremen | |
dc.contributor.other | D-28359 | |
dc.contributor.other | Germany; Department of Geosciences | |
dc.contributor.other | Bremen University | |
dc.contributor.other | Fahrenheit Str.6 | |
dc.contributor.other | Bremen | |
dc.contributor.other | D-28359 | |
dc.contributor.other | Germany; Department of Pharmacognosy | |
dc.contributor.other | College of Pharmacy | |
dc.contributor.other | Modern Science and Arts University | |
dc.contributor.other | Cairo | |
dc.contributor.other | 12566 | |
dc.contributor.other | Egypt; Department of Bioorganic Chemistry | |
dc.contributor.other | Leibniz Institute of Plant Biochemistry | |
dc.contributor.other | Weinberg 3 | |
dc.contributor.other | Halle | |
dc.contributor.other | D-06120 | |
dc.contributor.other | Germany | |
dc.date.accessioned | 2020-01-09T20:41:12Z | |
dc.date.available | 2020-01-09T20:41:12Z | |
dc.date.issued | 2017 | |
dc.description | Scopus | |
dc.description.abstract | The effect of three oxylipin analogues, a terpenoid intermediate and wounding on the secondary metabolism of the soft corals Sarcophyton glaucum and Lobophyton pauciflorum was assessed. Examined oxylipins included prostaglandin (PG-E1), methyl jasmonate (MeJA), and arachidonic acid (AA) in addition to the diterpene precursor geranylgeranylpyrophosphate (GGP). Post-elicitation, metabolites were extracted from coral heads and analyzed via UPLC-MS followed by multivariate data analyses. Both supervised and unsupervised data analyses were used for sample classification. Multivariate data analysis revealed clear segregation of PG-E1 and MeJA elicited S. glaucum at 24 and 48 h post elicitation from other elicitor samples and unelicited control group. PG-E1 was found more effective in upregulating S. glaucum terpene/sterol levels compared to MeJA. Metabolites showing upregulation in S. glaucum include campestene-triol and a cembranoid, detected at ca. 30- and 2-fold higher levels compared to unelicited corals. Such an elicitation effect was less notable in the other coral species L. pauciflorum, suggesting a differential oxylipin response in soft corals. Compared to MeJA and PG, no elicitation effect was observed for GGP, AA or wounding on the metabolism of either coral species. � 2017 by the authors. Licensee MDPI, Basel, Switzerland. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=26370&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.3390/molecules22122195 | |
dc.identifier.doi | PubMed ID 29232862 | |
dc.identifier.issn | 14203049 | |
dc.identifier.other | https://doi.org/10.3390/molecules22122195 | |
dc.identifier.other | PubMed ID 29232862 | |
dc.identifier.uri | https://t.ly/AXZxy | |
dc.language.iso | English | en_US |
dc.publisher | MDPI AG | en_US |
dc.relation.ispartofseries | Molecules | |
dc.relation.ispartofseries | 22 | |
dc.subject | October University for Modern Sciences and Arts | |
dc.subject | University for Modern Sciences and Arts | |
dc.subject | MSA University | |
dc.subject | جامعة أكتوبر للعلوم الحديثة والآداب | |
dc.subject | Cembranoids | en_US |
dc.subject | Chemometrics | en_US |
dc.subject | Oxylipins | en_US |
dc.subject | Soft corals | en_US |
dc.subject | Sterols | en_US |
dc.subject | acetic acid | en_US |
dc.subject | arachidonic acid | en_US |
dc.subject | cyclopentane derivative | en_US |
dc.subject | jasmonic acid methyl ester | en_US |
dc.subject | oxylipin | en_US |
dc.subject | prostaglandin E1 | en_US |
dc.subject | terpene | en_US |
dc.subject | animal | en_US |
dc.subject | Anthozoa | en_US |
dc.subject | chemistry | en_US |
dc.subject | drug effect | en_US |
dc.subject | high performance liquid chromatography | en_US |
dc.subject | mass spectrometry | en_US |
dc.subject | metabolism | en_US |
dc.subject | principal component analysis | en_US |
dc.subject | secondary metabolism | en_US |
dc.subject | Acetates | en_US |
dc.subject | Alprostadil | en_US |
dc.subject | Animals | en_US |
dc.subject | Anthozoa | en_US |
dc.subject | Arachidonic Acid | en_US |
dc.subject | Chromatography, High Pressure Liquid | en_US |
dc.subject | Cyclopentanes | en_US |
dc.subject | Mass Spectrometry | en_US |
dc.subject | Oxylipins | en_US |
dc.subject | Principal Component Analysis | en_US |
dc.subject | Secondary Metabolism | en_US |
dc.subject | Terpenes | en_US |
dc.title | Effect of oxylipins, terpenoid precursors and wounding on soft corals' secondary metabolism as analyzed via UPLC/MS and chemometrics | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Wang, W., Zhao, Z.J., Xu, Y., Qian, X., Zhong, J.J., Efficient induction of ginsenoside biosynthesis and alteration of ginsenoside heterogeneity in cell cultures of Panax notoginseng by using chemically synthesized 2-hydroxyethyl jasmonate (2006) Appl. Microbiol. Biotechnol., 70, pp. 298-307; Creelman, R.A., Mullet, J.E., Biosynthesis and action of jasmonates in plants (1997) Annu. Rev. Plant Physiol. Plant Mol. Biol., 48, pp. 355-381; Gundlach, H., Muller, M.J., Kutchan, T.M., Zenk, M.H., Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures (1992) Proc. Natl. Acad. Sci. USA, 89, pp. 2389-2393; De Geyter, N., Gholami, A., Goormachtig, S., Goossens, A., Transcriptional machineries in jasmonate-elicited plant secondary metabolism (2012) Trends Plant Sci., 17, pp. 349-359; Achnine, L., Huhman, D.V., Farag, M.A., Sumner, L.W., Blount, J.W., Dixon, R.A., Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula (2005) Plant J. Cell Mol. Biol., 41, pp. 875-887; Farag, M.A., Huhman, D.V., Dixon, R.A., Sumner, L.W., Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures (2008) Plant Physiol., 146, pp. 387-402; Zlotek, U., Swieca, M., Jakubczyk, A., Effect of abiotic elicitation on main health-promoting compounds, antioxidant activity and commercial quality of butter lettuce (Lactuca sativa L.) (2014) Food Chem., 148, pp. 253-260; Deepthi, S., Satheeshkumar, K., Cell line selection combined with jasmonic acid elicitation enhance camptothecin production in cell suspension cultures of Ophiorrhiza mungos L (2017) Appl. Microbiol. Biotechnol., 101, pp. 545-558; Seo, M.J., Oh, D.K., Prostaglandin synthases: Molecular characterization and involvement in prostaglandin biosynthesis (2017) Prog. Lipid Res., 66, pp. 50-68; Gerhart, D.J., Prostaglandin A2 in the caribbean gorgonian Plexaura homomalla: Evidence against allelopathic and antifouling roles (1986) Biochem. Syst. Ecol., 14, pp. 417-421; Stanley, D., Kim, Y., Prostaglandins and their receptors in insect biology (2011) Front. Endocrinol., 2, p. 105; Farag, M.A., Porzel, A., Al-Hammady, M.A., Hegazy, M.E., Meyer, A., Mohamed, T.A., Westphal, H., Wessjohann, L.A., Soft corals biodiversity in the egyptian red sea: A comparative MS and NMR metabolomics approach of wild and aquarium grown species (2016) J. Proteome Res., 15, pp. 1274-1287; Sammarco, P.W., Strychar, K.B., Responses to high seawater temperatures in zooxanthellate octocorals (2013) PLoS ONE, 8, p. e54989; Rosenberg, E., Koren, O., Reshef, L., Efrony, R., Zilber-Rosenberg, I., The role of microorganisms in coral health, disease and evolution (2007) Nat. Rev. Microbiol., 5, pp. 355-362; Hou, X.M., Xu, R.F., Gu, Y.C., Wang, C.Y., Shao, C.L., Biological and chemical diversity of coral-derived microorganisms (2015) Curr. Med. Chem., 22, pp. 3707-3762; Leal, M.C., Puga, J., Serodio, J., Gomes, N.C., Calado, R., Trends in the discovery of new marine natural products from invertebrates over the last two decades-Where and what are we bioprospecting? (2012) PLoS ONE, 7, p. e30580; Pandolfi, J.M., Ecology: Deep and complex ways to survive bleaching (2015) Nature, 518, pp. 43-44; Sumner, L.W., Lei, Z., Nikolau, B.J., Saito, K., Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects (2015) Nat. Prod. Rep., 32, pp. 212-229; Farag, M.A., Comparative mass spectrometry & nuclear magnetic resonance metabolomic approaches for nutraceuticals quality control analysis: A brief review (2014) Recent Pat. Biotechnol., 8, pp. 17-24; Lei, Z., Huhman, D.V., Sumner, L.W., Mass spectrometry strategies in metabolomics (2011) J. Biol. Chem., 286, pp. 25435-25442; Farag, M.A., Al-Mahdy, D.A., Meyer, A., Westphal, H., Wessjohann, L.A., Metabolomics reveals biotic and abiotic elicitor effects on the soft coral Sarcophyton ehrenbergi terpenoid content (2017) Sci. Rep., 7, p. 648; Abdel-Lateff, A., Alarif, W.M., Ayyad, S.E., Al-Lihaibi, S.S., Basaif, S.A., New cytotoxic isoprenoid derivatives from the Red Sea soft coral Sarcophyton glaucum (2015) Nat. Prod. Res., 29, pp. 24-30; Huang, C.Y., Sung, P.J., Uvarani, C., Su, J.H., Lu, M.C., Hwang, T.L., Dai, C.F., Sheu, J.H., Glaucumolides A and B, biscembranoids with new structural type from a cultured soft coral sarcophyton glaucum (2015) Sci. Rep., 5, p. 15624; Yan, P., Deng, Z., Van Ofwegen, L., Proksch, P., Lin, W., Lobophytones U-Z (1), biscembranoids from the Chinese soft coral Lobophytum pauciflorum (2011) Chem. Biodivers., 8, pp. 1724-1734; Zhang, M., Su, P., Zhou, Y.J., Wang, X.J., Zhao, Y.J., Liu, Y.J., Tong, Y.R., Gao, W., Identification of geranylgeranyl diphosphate synthase genes from Tripterygium wilfordii (2015) Plant Cell Rep., 34, pp. 2179-2188; Boehnlein, J.M., Santiago-V�zquez, L.Z., Kerr, R.G., Diterpene biosynthesis by the dinoflagellate symbiont of the Caribbean gorgonian Pseudopterogorgia bipinnata (2005) Mar. Ecol. Prog. Ser., 303, pp. 105-111; Bogdanov, A., Hertzer, C., Kehraus, S., Nietzer, S., Rohde, S., Schupp, P.J., Wagele, H., Konig, G.M., Defensive diterpene from the aeolidoidean phyllodesmium longicirrum (2016) J. Nat. Prod., 79, pp. 611-615; Ul Hassan, M.N., Zainal, Z., Ismail, I., Green leaf volatiles: Biosynthesis, biological functions and their applications in biotechnology (2015) Plant Biotechnol. J., 13, pp. 727-739; Ellis, S., Sharron, L., (1999) The Culture of Soft Corals (Order: Alcyonacea) for the Marine Aquarium Trade, , Center for Tropical and Subtropical Aquaculture: Waimanalo, HI, USA; Alonso, A., Marsal, S., Julia, A., Analytical methods in untargeted metabolomics: State of the art in 2015 (2015) Front. Bioeng. Biotechnol., 3, p. 23; Kamel, H.N., Slattery, M., Terpenoids of sinularia.: Chemistry and biomedical applications (2005) Pharm. Biol., 43, pp. 253-269; Christian, O.E., Compton, J., Christian, K.R., Mooberry, S.L., Valeriote, F.A., Crews, P., Using jasplakinolide to turn on pathways that enable the isolation of new chaetoglobosins from Phomospis asparagi (2005) J. Nat. Prod., 68, pp. 1592-1597; Peixoto, R.S., Rosado, P.M., Leite, D.C., Rosado, A.S., Bourne, D.G., Beneficial microorganisms for corals (BMC): Proposed mechanisms for coral health and resilience (2017) Front. Microbiol., 8, p. 341; Schmidt, A., Nagel, R., Krekling, T., Christiansen, E., Gershenzon, J., Krokene, P., Induction of isoprenyl diphosphate synthases, plant hormones and defense signalling genes correlates with traumatic resin duct formation in Norway spruce (Picea abies) (2011) Plant Mol. Biol., 77, pp. 577-590; Shi, M., Zhou, W., Zhang, J., Huang, S., Wang, H., Kai, G., Methyl jasmonate induction of tanshinone biosynthesis in Salvia miltiorrhiza hairy roots is mediated by JASMONATE ZIM-DOMAIN repressor proteins (2016) Sci. Rep., 6, p. 20919; Blechert, S., Brodschelm, W., Holder, S., Kammerer, L., Kutchan, T.M., Mueller, M.J., Xia, Z.Q., Zenk, M.H., The octadecanoic pathway: Signal molecules for the regulation of secondary pathways (1995) Proc. Natl. Acad. Sci. USA, 92, pp. 4099-4105; Wasternack, C., Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development (2007) Ann. Bot., 100, pp. 681-697; Tamogami, S., Rakwal, R., Kodama, O., Phytoalexin production elicited by exogenously applied jasmonic acid in rice leaves (Oryza sativa L.) is under the control of cytokinins and ascorbic acid (1997) FEBS Lett., 412, pp. 61-64; Farmer, E.E., Almeras, E., Krishnamurthy, V., Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory (2003) Curr. Opin. Plant Biol., 6, pp. 372-378; Zhou, M., Memelink, J., Jasmonate-responsive transcription factors regulating plant secondary metabolism (2016) Biotechnol. Adv., 34, pp. 441-449; Seo, H.S., Song, J.T., Cheong, J.J., Lee, Y.H., Lee, Y.W., Hwang, I., Lee, J.S., Choi, Y.D., Jasmonic acid carboxyl methyltransferase: A key enzyme for jasmonate-regulated plant responses (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 4788-4793; Hackett, J.D., Anderson, D.M., Erdner, D.L., Bhattacharya, D., Dinoflagellates: A remarkable evolutionary experiment (2004) Am. J. Bot., 91, pp. 1523-1534; Duh, C.-Y., Wang, S.-K., Tseng, H.-K., Sheu, J.-H., Chiang, M.Y., Novel cytotoxic cembranoids from the soft coral sinularia flexibilis (1998) J. Nat. Prod., 61, pp. 844-847; P�ter, M., Glatz, A., Gudmann, P., Gombos, I., T�r�k, Z., Horv�th, I., V�gh, L., Balogh, G., Metabolic crosstalk between membrane and storage lipids facilitates heat stress management in Schizosaccharomyces pombe (2017) PLoS ONE, 12, p. e0173739; McFadden, C.S., Alderslade, P., Van Ofwegen, L.P., Johnsen, H., Rusmevichientong, A., Phylogenetic relationships within the tropical soft coral genera sarcophyton and lobophytum (anthozoa, octocorallia) (2006) Invertebr. Biol., 125, pp. 288-305; Paul, V.J., Puglisi, M.P., Chemical mediation of interactions among marine organisms (2004) Nat. Prod. Rep., 21, pp. 189-209; Van Alstyne, K.L., Paul, V.J., Chemical and structural defenses in the sea fan Gorgonia ventalina: Effects against generalist and specialist predators (1992) Coral Reefs, 11, pp. 155-159; Sammarco, P.W., La Barre, S., Coll, J.C., Defensive strategies of soft corals (Coelenterata: Octocorallia) of the Great Barrier Reef (1987) Oecologia, 74, pp. 93-101; Sella, I., Benayahu, Y., Rearing cuttings of the soft coral Sarcophyton glaucum (Octocorallia, Alcyonacea): Towards mass production in a closed seawater system (2010) Aquac. Res., 41, pp. 1748-1758; Kawahara, T., Itoh, M., Izumikawa, M., Sakata, N., Tsuchida, T., Shin-Ya, K., New chaetoglobosin derivatives, MBJ-0038, MBJ-0039 and MBJ-0040, isolated from the fungus Chaetomium sp. F24230 (2013) J. Antibiot., 66, pp. 727-730; Namikoshi, M., Kobayashi, H., Yoshimoto, T., Meguro, S., Akano, K., Isolation and characterization of bioactive metabolites from marine-derived filamentous fungi collected from tropical and sub-tropical coral reefs (2000) Chem. Pharm. Bull., 48, pp. 1452-1457; Ferrer, A., Altabella, T., Arr�, M., Boronat, A., Emerging roles for conjugated sterols in plants (2017) Prog. Lipid Res., 67, pp. 27-37; Gershenzon, J., Dudareva, N., The function of terpene natural products in the natural world (2007) Nat. Chem. Biol., 3, pp. 408-414; Gross, H., K�nig, G.M., Terpenoids from marine organisms: Unique structures and their pharmacological potential (2006) Phytochem. Rev., 5, pp. 115-141; Smith, C.A., Want, E.J., O'Maille, G., Abagyan, R., Siuzdak, G., XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification (2006) Anal. Chem., 78, pp. 779-787; Farag, M.A., Wessjohann, L.A., Metabolome classification of commercial hypericum perforatum (St. John's Wort) preparations via UPLC-qTOF-MS and chemometrics (2012) Planta Med., 78, pp. 488-496; Bylesj�, M., Rantalainen, M., Cloarec, O., Nicholson, J.K., Holmes, E., Trygg, J., OPLS discriminant analysis: Combining the strengths of PLS-DA and SIMCA classification (2006) J. Chemom., 20, pp. 341-351 | |
dcterms.source | Scopus |