Effect of oxylipins, terpenoid precursors and wounding on soft corals' secondary metabolism as analyzed via UPLC/MS and chemometrics

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorFarag M.A.
dc.contributor.authorWestphal H.
dc.contributor.authorEissa T.F.
dc.contributor.authorWessjohann L.A.
dc.contributor.authorMeyer A.
dc.contributor.otherDepartment of Pharmacognosy
dc.contributor.otherCollege of Pharmacy
dc.contributor.otherCairo University
dc.contributor.otherKasr El Aini St.
dc.contributor.otherCairo
dc.contributor.other11562
dc.contributor.otherEgypt; Department of Chemistry
dc.contributor.otherSchool of Sciences and Engineering
dc.contributor.otherAmerican University in Cairo
dc.contributor.otherNew Cairo
dc.contributor.other11835
dc.contributor.otherEgypt; Leibniz Centre for Tropical Marine Research
dc.contributor.otherFahrenheit Str.6
dc.contributor.otherBremen
dc.contributor.otherD-28359
dc.contributor.otherGermany; Department of Geosciences
dc.contributor.otherBremen University
dc.contributor.otherFahrenheit Str.6
dc.contributor.otherBremen
dc.contributor.otherD-28359
dc.contributor.otherGermany; Department of Pharmacognosy
dc.contributor.otherCollege of Pharmacy
dc.contributor.otherModern Science and Arts University
dc.contributor.otherCairo
dc.contributor.other12566
dc.contributor.otherEgypt; Department of Bioorganic Chemistry
dc.contributor.otherLeibniz Institute of Plant Biochemistry
dc.contributor.otherWeinberg 3
dc.contributor.otherHalle
dc.contributor.otherD-06120
dc.contributor.otherGermany
dc.date.accessioned2020-01-09T20:41:12Z
dc.date.available2020-01-09T20:41:12Z
dc.date.issued2017
dc.descriptionScopus
dc.description.abstractThe effect of three oxylipin analogues, a terpenoid intermediate and wounding on the secondary metabolism of the soft corals Sarcophyton glaucum and Lobophyton pauciflorum was assessed. Examined oxylipins included prostaglandin (PG-E1), methyl jasmonate (MeJA), and arachidonic acid (AA) in addition to the diterpene precursor geranylgeranylpyrophosphate (GGP). Post-elicitation, metabolites were extracted from coral heads and analyzed via UPLC-MS followed by multivariate data analyses. Both supervised and unsupervised data analyses were used for sample classification. Multivariate data analysis revealed clear segregation of PG-E1 and MeJA elicited S. glaucum at 24 and 48 h post elicitation from other elicitor samples and unelicited control group. PG-E1 was found more effective in upregulating S. glaucum terpene/sterol levels compared to MeJA. Metabolites showing upregulation in S. glaucum include campestene-triol and a cembranoid, detected at ca. 30- and 2-fold higher levels compared to unelicited corals. Such an elicitation effect was less notable in the other coral species L. pauciflorum, suggesting a differential oxylipin response in soft corals. Compared to MeJA and PG, no elicitation effect was observed for GGP, AA or wounding on the metabolism of either coral species. � 2017 by the authors. Licensee MDPI, Basel, Switzerland.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=26370&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.3390/molecules22122195
dc.identifier.doiPubMed ID 29232862
dc.identifier.issn14203049
dc.identifier.otherhttps://doi.org/10.3390/molecules22122195
dc.identifier.otherPubMed ID 29232862
dc.identifier.urihttps://t.ly/AXZxy
dc.language.isoEnglishen_US
dc.publisherMDPI AGen_US
dc.relation.ispartofseriesMolecules
dc.relation.ispartofseries22
dc.subjectOctober University for Modern Sciences and Arts
dc.subjectUniversity for Modern Sciences and Arts
dc.subjectMSA University
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectCembranoidsen_US
dc.subjectChemometricsen_US
dc.subjectOxylipinsen_US
dc.subjectSoft coralsen_US
dc.subjectSterolsen_US
dc.subjectacetic aciden_US
dc.subjectarachidonic aciden_US
dc.subjectcyclopentane derivativeen_US
dc.subjectjasmonic acid methyl esteren_US
dc.subjectoxylipinen_US
dc.subjectprostaglandin E1en_US
dc.subjectterpeneen_US
dc.subjectanimalen_US
dc.subjectAnthozoaen_US
dc.subjectchemistryen_US
dc.subjectdrug effecten_US
dc.subjecthigh performance liquid chromatographyen_US
dc.subjectmass spectrometryen_US
dc.subjectmetabolismen_US
dc.subjectprincipal component analysisen_US
dc.subjectsecondary metabolismen_US
dc.subjectAcetatesen_US
dc.subjectAlprostadilen_US
dc.subjectAnimalsen_US
dc.subjectAnthozoaen_US
dc.subjectArachidonic Aciden_US
dc.subjectChromatography, High Pressure Liquiden_US
dc.subjectCyclopentanesen_US
dc.subjectMass Spectrometryen_US
dc.subjectOxylipinsen_US
dc.subjectPrincipal Component Analysisen_US
dc.subjectSecondary Metabolismen_US
dc.subjectTerpenesen_US
dc.titleEffect of oxylipins, terpenoid precursors and wounding on soft corals' secondary metabolism as analyzed via UPLC/MS and chemometricsen_US
dc.typeArticleen_US
dcterms.isReferencedByWang, W., Zhao, Z.J., Xu, Y., Qian, X., Zhong, J.J., Efficient induction of ginsenoside biosynthesis and alteration of ginsenoside heterogeneity in cell cultures of Panax notoginseng by using chemically synthesized 2-hydroxyethyl jasmonate (2006) Appl. Microbiol. Biotechnol., 70, pp. 298-307; Creelman, R.A., Mullet, J.E., Biosynthesis and action of jasmonates in plants (1997) Annu. Rev. Plant Physiol. Plant Mol. Biol., 48, pp. 355-381; Gundlach, H., Muller, M.J., Kutchan, T.M., Zenk, M.H., Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures (1992) Proc. Natl. Acad. Sci. USA, 89, pp. 2389-2393; De Geyter, N., Gholami, A., Goormachtig, S., Goossens, A., Transcriptional machineries in jasmonate-elicited plant secondary metabolism (2012) Trends Plant Sci., 17, pp. 349-359; Achnine, L., Huhman, D.V., Farag, M.A., Sumner, L.W., Blount, J.W., Dixon, R.A., Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula (2005) Plant J. Cell Mol. Biol., 41, pp. 875-887; Farag, M.A., Huhman, D.V., Dixon, R.A., Sumner, L.W., Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures (2008) Plant Physiol., 146, pp. 387-402; Zlotek, U., Swieca, M., Jakubczyk, A., Effect of abiotic elicitation on main health-promoting compounds, antioxidant activity and commercial quality of butter lettuce (Lactuca sativa L.) (2014) Food Chem., 148, pp. 253-260; Deepthi, S., Satheeshkumar, K., Cell line selection combined with jasmonic acid elicitation enhance camptothecin production in cell suspension cultures of Ophiorrhiza mungos L (2017) Appl. Microbiol. Biotechnol., 101, pp. 545-558; Seo, M.J., Oh, D.K., Prostaglandin synthases: Molecular characterization and involvement in prostaglandin biosynthesis (2017) Prog. Lipid Res., 66, pp. 50-68; Gerhart, D.J., Prostaglandin A2 in the caribbean gorgonian Plexaura homomalla: Evidence against allelopathic and antifouling roles (1986) Biochem. Syst. Ecol., 14, pp. 417-421; Stanley, D., Kim, Y., Prostaglandins and their receptors in insect biology (2011) Front. Endocrinol., 2, p. 105; Farag, M.A., Porzel, A., Al-Hammady, M.A., Hegazy, M.E., Meyer, A., Mohamed, T.A., Westphal, H., Wessjohann, L.A., Soft corals biodiversity in the egyptian red sea: A comparative MS and NMR metabolomics approach of wild and aquarium grown species (2016) J. Proteome Res., 15, pp. 1274-1287; Sammarco, P.W., Strychar, K.B., Responses to high seawater temperatures in zooxanthellate octocorals (2013) PLoS ONE, 8, p. e54989; Rosenberg, E., Koren, O., Reshef, L., Efrony, R., Zilber-Rosenberg, I., The role of microorganisms in coral health, disease and evolution (2007) Nat. Rev. Microbiol., 5, pp. 355-362; Hou, X.M., Xu, R.F., Gu, Y.C., Wang, C.Y., Shao, C.L., Biological and chemical diversity of coral-derived microorganisms (2015) Curr. Med. Chem., 22, pp. 3707-3762; Leal, M.C., Puga, J., Serodio, J., Gomes, N.C., Calado, R., Trends in the discovery of new marine natural products from invertebrates over the last two decades-Where and what are we bioprospecting? (2012) PLoS ONE, 7, p. e30580; Pandolfi, J.M., Ecology: Deep and complex ways to survive bleaching (2015) Nature, 518, pp. 43-44; Sumner, L.W., Lei, Z., Nikolau, B.J., Saito, K., Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects (2015) Nat. Prod. Rep., 32, pp. 212-229; Farag, M.A., Comparative mass spectrometry & nuclear magnetic resonance metabolomic approaches for nutraceuticals quality control analysis: A brief review (2014) Recent Pat. Biotechnol., 8, pp. 17-24; Lei, Z., Huhman, D.V., Sumner, L.W., Mass spectrometry strategies in metabolomics (2011) J. Biol. Chem., 286, pp. 25435-25442; Farag, M.A., Al-Mahdy, D.A., Meyer, A., Westphal, H., Wessjohann, L.A., Metabolomics reveals biotic and abiotic elicitor effects on the soft coral Sarcophyton ehrenbergi terpenoid content (2017) Sci. Rep., 7, p. 648; Abdel-Lateff, A., Alarif, W.M., Ayyad, S.E., Al-Lihaibi, S.S., Basaif, S.A., New cytotoxic isoprenoid derivatives from the Red Sea soft coral Sarcophyton glaucum (2015) Nat. Prod. Res., 29, pp. 24-30; Huang, C.Y., Sung, P.J., Uvarani, C., Su, J.H., Lu, M.C., Hwang, T.L., Dai, C.F., Sheu, J.H., Glaucumolides A and B, biscembranoids with new structural type from a cultured soft coral sarcophyton glaucum (2015) Sci. Rep., 5, p. 15624; Yan, P., Deng, Z., Van Ofwegen, L., Proksch, P., Lin, W., Lobophytones U-Z (1), biscembranoids from the Chinese soft coral Lobophytum pauciflorum (2011) Chem. Biodivers., 8, pp. 1724-1734; Zhang, M., Su, P., Zhou, Y.J., Wang, X.J., Zhao, Y.J., Liu, Y.J., Tong, Y.R., Gao, W., Identification of geranylgeranyl diphosphate synthase genes from Tripterygium wilfordii (2015) Plant Cell Rep., 34, pp. 2179-2188; Boehnlein, J.M., Santiago-V�zquez, L.Z., Kerr, R.G., Diterpene biosynthesis by the dinoflagellate symbiont of the Caribbean gorgonian Pseudopterogorgia bipinnata (2005) Mar. Ecol. Prog. Ser., 303, pp. 105-111; Bogdanov, A., Hertzer, C., Kehraus, S., Nietzer, S., Rohde, S., Schupp, P.J., Wagele, H., Konig, G.M., Defensive diterpene from the aeolidoidean phyllodesmium longicirrum (2016) J. Nat. Prod., 79, pp. 611-615; Ul Hassan, M.N., Zainal, Z., Ismail, I., Green leaf volatiles: Biosynthesis, biological functions and their applications in biotechnology (2015) Plant Biotechnol. J., 13, pp. 727-739; Ellis, S., Sharron, L., (1999) The Culture of Soft Corals (Order: Alcyonacea) for the Marine Aquarium Trade, , Center for Tropical and Subtropical Aquaculture: Waimanalo, HI, USA; Alonso, A., Marsal, S., Julia, A., Analytical methods in untargeted metabolomics: State of the art in 2015 (2015) Front. Bioeng. Biotechnol., 3, p. 23; Kamel, H.N., Slattery, M., Terpenoids of sinularia.: Chemistry and biomedical applications (2005) Pharm. Biol., 43, pp. 253-269; Christian, O.E., Compton, J., Christian, K.R., Mooberry, S.L., Valeriote, F.A., Crews, P., Using jasplakinolide to turn on pathways that enable the isolation of new chaetoglobosins from Phomospis asparagi (2005) J. Nat. Prod., 68, pp. 1592-1597; Peixoto, R.S., Rosado, P.M., Leite, D.C., Rosado, A.S., Bourne, D.G., Beneficial microorganisms for corals (BMC): Proposed mechanisms for coral health and resilience (2017) Front. Microbiol., 8, p. 341; Schmidt, A., Nagel, R., Krekling, T., Christiansen, E., Gershenzon, J., Krokene, P., Induction of isoprenyl diphosphate synthases, plant hormones and defense signalling genes correlates with traumatic resin duct formation in Norway spruce (Picea abies) (2011) Plant Mol. Biol., 77, pp. 577-590; Shi, M., Zhou, W., Zhang, J., Huang, S., Wang, H., Kai, G., Methyl jasmonate induction of tanshinone biosynthesis in Salvia miltiorrhiza hairy roots is mediated by JASMONATE ZIM-DOMAIN repressor proteins (2016) Sci. Rep., 6, p. 20919; Blechert, S., Brodschelm, W., Holder, S., Kammerer, L., Kutchan, T.M., Mueller, M.J., Xia, Z.Q., Zenk, M.H., The octadecanoic pathway: Signal molecules for the regulation of secondary pathways (1995) Proc. Natl. Acad. Sci. USA, 92, pp. 4099-4105; Wasternack, C., Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development (2007) Ann. Bot., 100, pp. 681-697; Tamogami, S., Rakwal, R., Kodama, O., Phytoalexin production elicited by exogenously applied jasmonic acid in rice leaves (Oryza sativa L.) is under the control of cytokinins and ascorbic acid (1997) FEBS Lett., 412, pp. 61-64; Farmer, E.E., Almeras, E., Krishnamurthy, V., Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory (2003) Curr. Opin. Plant Biol., 6, pp. 372-378; Zhou, M., Memelink, J., Jasmonate-responsive transcription factors regulating plant secondary metabolism (2016) Biotechnol. Adv., 34, pp. 441-449; Seo, H.S., Song, J.T., Cheong, J.J., Lee, Y.H., Lee, Y.W., Hwang, I., Lee, J.S., Choi, Y.D., Jasmonic acid carboxyl methyltransferase: A key enzyme for jasmonate-regulated plant responses (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 4788-4793; Hackett, J.D., Anderson, D.M., Erdner, D.L., Bhattacharya, D., Dinoflagellates: A remarkable evolutionary experiment (2004) Am. J. Bot., 91, pp. 1523-1534; Duh, C.-Y., Wang, S.-K., Tseng, H.-K., Sheu, J.-H., Chiang, M.Y., Novel cytotoxic cembranoids from the soft coral sinularia flexibilis (1998) J. Nat. Prod., 61, pp. 844-847; P�ter, M., Glatz, A., Gudmann, P., Gombos, I., T�r�k, Z., Horv�th, I., V�gh, L., Balogh, G., Metabolic crosstalk between membrane and storage lipids facilitates heat stress management in Schizosaccharomyces pombe (2017) PLoS ONE, 12, p. e0173739; McFadden, C.S., Alderslade, P., Van Ofwegen, L.P., Johnsen, H., Rusmevichientong, A., Phylogenetic relationships within the tropical soft coral genera sarcophyton and lobophytum (anthozoa, octocorallia) (2006) Invertebr. Biol., 125, pp. 288-305; Paul, V.J., Puglisi, M.P., Chemical mediation of interactions among marine organisms (2004) Nat. Prod. Rep., 21, pp. 189-209; Van Alstyne, K.L., Paul, V.J., Chemical and structural defenses in the sea fan Gorgonia ventalina: Effects against generalist and specialist predators (1992) Coral Reefs, 11, pp. 155-159; Sammarco, P.W., La Barre, S., Coll, J.C., Defensive strategies of soft corals (Coelenterata: Octocorallia) of the Great Barrier Reef (1987) Oecologia, 74, pp. 93-101; Sella, I., Benayahu, Y., Rearing cuttings of the soft coral Sarcophyton glaucum (Octocorallia, Alcyonacea): Towards mass production in a closed seawater system (2010) Aquac. Res., 41, pp. 1748-1758; Kawahara, T., Itoh, M., Izumikawa, M., Sakata, N., Tsuchida, T., Shin-Ya, K., New chaetoglobosin derivatives, MBJ-0038, MBJ-0039 and MBJ-0040, isolated from the fungus Chaetomium sp. F24230 (2013) J. Antibiot., 66, pp. 727-730; Namikoshi, M., Kobayashi, H., Yoshimoto, T., Meguro, S., Akano, K., Isolation and characterization of bioactive metabolites from marine-derived filamentous fungi collected from tropical and sub-tropical coral reefs (2000) Chem. Pharm. Bull., 48, pp. 1452-1457; Ferrer, A., Altabella, T., Arr�, M., Boronat, A., Emerging roles for conjugated sterols in plants (2017) Prog. Lipid Res., 67, pp. 27-37; Gershenzon, J., Dudareva, N., The function of terpene natural products in the natural world (2007) Nat. Chem. Biol., 3, pp. 408-414; Gross, H., K�nig, G.M., Terpenoids from marine organisms: Unique structures and their pharmacological potential (2006) Phytochem. Rev., 5, pp. 115-141; Smith, C.A., Want, E.J., O'Maille, G., Abagyan, R., Siuzdak, G., XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification (2006) Anal. Chem., 78, pp. 779-787; Farag, M.A., Wessjohann, L.A., Metabolome classification of commercial hypericum perforatum (St. John's Wort) preparations via UPLC-qTOF-MS and chemometrics (2012) Planta Med., 78, pp. 488-496; Bylesj�, M., Rantalainen, M., Cloarec, O., Nicholson, J.K., Holmes, E., Trygg, J., OPLS discriminant analysis: Combining the strengths of PLS-DA and SIMCA classification (2006) J. Chemom., 20, pp. 341-351
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
molecules-22-02195.pdf
Size:
2.27 MB
Format:
Adobe Portable Document Format
Description: