Molecular typing and virulence analysis of multidrug resistant Klebsiella pneumoniae clinical isolates recovered from Egyptian hospitals

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorWasfi R.
dc.contributor.authorElkhatib W.F.
dc.contributor.authorAshour H.M.
dc.contributor.otherDepartment of Microbiology and Immunology
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Sciences and Arts
dc.contributor.otherGiza
dc.contributor.otherEgypt; Department of Microbiology and Immunology
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherAin Shams University
dc.contributor.otherCairo
dc.contributor.otherEgypt; Department of Pharmacy Practice
dc.contributor.otherSchool of Pharmacy
dc.contributor.otherChapman University
dc.contributor.otherOrange
dc.contributor.otherCA
dc.contributor.otherUnited States; Department of Biological Sciences
dc.contributor.otherCollege of Arts and Sciences
dc.contributor.otherUniversity of South Florida St. Petersburg
dc.contributor.otherSt. Petersburg
dc.contributor.otherFL
dc.contributor.otherUnited States; Department of Microbiology and Immunology
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherCairo University
dc.contributor.otherCairo
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:41:29Z
dc.date.available2020-01-09T20:41:29Z
dc.date.issued2016
dc.descriptionScopus
dc.description.abstractKlebsiella pneumonia infection rates have increased dramatically. Molecular typing and virulence analysis are powerful tools that can shed light on Klebsiella pneumonia infections. Whereas 77.7% (28/36) of clinical isolates indicated multidrug resistant (MDR) patterns, 50% (18/36) indicated carpabenem resistance. Gene prevalence for the AcrAB efflux pump (82.14%) was more than that of the mdtK efflux pump (32.14%) in the MDR isolates. FimH-1 and mrkD genes were prevalent in wound and blood isolates. FimH-1 gene was prevalent in sputum while mrkD gene was prevalent in urine. Serum resistance associated with outer membrane protein coding gene (traT) was found in all blood isolates. IucC, entB, and Irp-1 were detected in 32.14%, 78.5% and 10.7% of MDR isolates, respectively. We used two Polymerase Chain Reaction (PCR) analyses: Enterobacterial Repetitive Intergenic Consensus (ERIC) and Random Amplified Polymorphic DNA (RAPD). ERIC-PCR revealed 21 and RAPD-PCR revealed 18 distinct patterns of isolates with similarity ?80%. ERIC genotyping significantly correlated with resistance patterns and virulence determinants. RAPD genotyping significantly correlated with resistance patterns but not with virulence determinants. Both RAPD and ERIC genotyping methods had no correlation with the capsule types. These findings can help up better predict MDR Klebsiella pneumoniae outbreaks associated with specific genotyping patterns. � The Author(s) 2016.en_US
dc.identifier.doihttps://doi.org/10.1038/srep38929
dc.identifier.doiPubMed ID 28004732
dc.identifier.issn20452322
dc.identifier.otherhttps://doi.org/10.1038/srep38929
dc.identifier.otherPubMed ID 28004732
dc.identifier.urihttps://t.ly/ndvqj
dc.language.isoEnglishen_US
dc.publisherNature Publishing Groupen_US
dc.relation.ispartofseriesScientific Reports
dc.relation.ispartofseries6
dc.subjectbacterial proteinen_US
dc.subjectclinical trialen_US
dc.subjectEgypten_US
dc.subjectfemaleen_US
dc.subjectgeneticsen_US
dc.subjectgenotyping techniqueen_US
dc.subjecthospitalen_US
dc.subjecthumanen_US
dc.subjectisolation and purificationen_US
dc.subjectKlebsiella infectionen_US
dc.subjectKlebsiella pneumoniaeen_US
dc.subjectmaleen_US
dc.subjectmulticenter studyen_US
dc.subjectmultidrug resistanceen_US
dc.subjectpathogenicityen_US
dc.subjectBacterial Proteinsen_US
dc.subjectDrug Resistance, Multiple, Bacterialen_US
dc.subjectEgypten_US
dc.subjectFemaleen_US
dc.subjectGenotyping Techniquesen_US
dc.subjectHospitalsen_US
dc.subjectHumansen_US
dc.subjectKlebsiella Infectionsen_US
dc.subjectKlebsiella pneumoniaeen_US
dc.subjectMaleen_US
dc.titleMolecular typing and virulence analysis of multidrug resistant Klebsiella pneumoniae clinical isolates recovered from Egyptian hospitalsen_US
dc.typeArticleen_US
dcterms.isReferencedByBrisse, S., Verhoef, J., Phylogenetic diversity of Klebsiella pneumoniae and Klebsiella oxytoca clinical isolates revealed by randomly amplified polymorphic DNA, gyrA and parC genes sequencing and automated ribotyping (2001) Int J Syst Evol Microbiol, 51, pp. 915-924; Lin, W.H., Clinical and microbiological characteristics of Klebsiella pneumoniae isolates causing community-acquired urinary tract infections (2010) Infection, 38, pp. 459-464; Daef, E.A., Elsherbiny, N.M., Clinical and microbiological profile of nosocomial infections in adult intensive care units at assiut university hospitals, Egypt (2012) Journal of American Science, 8, pp. 1239-1250; Abdel-Wahab, F., Ghoneim, M., Khashaba, M., El-Gilany, A.H., Abdel-Hady, D., Nosocomial infection surveillance in an Egyptian neonatal intensive care unit (2013) J Hosp Infect, 83, pp. 196-199; Fuursted, K., Virulence of a Klebsiella pneumoniae strain carrying the New Delhi metallo-beta-lactamase-1 (NDM-1) (2012) Microbes Infect, 14, pp. 155-158; Lawlor, M.S., O'Connor, C., Miller, V.L., Yersiniabactin is a virulence factor for klebsiella pneumoniae during pulmonary infection (2007) Infection and Immunity, 75, pp. 1463-1472; Wu, C.-C., IscR regulation of capsular polysaccharide biosynthesis and iron-acquisition systems in klebsiella pneumoniae CG43 (2014) PLoS One, 9, p. e107812; Tanwar, J., Das, S., Fatima, Z., Hameed, S., Multidrug resistance: An emerging crisis (2014) Interdisciplinary Perspectives on Infectious Diseases, 2014, p. 7; Munoz-Price, L.S., Quinn, J.P., The Spread of Klebsiella pneumoniae Carbapenemases: A Tale of Strains, Plasmids, and Transposons (2009) Clinical Infectious Diseases, 49, pp. 1739-1741; Falagas, M.E., Karageorgopoulos, D.E., Extended-spectrum beta-lactamase-producing organisms (2009) J Hosp Infect, 73, pp. 345-354; Miro, E., Spread of plasmids containing the bla(VIM-1) and bla(CTX-M) genes and the qnr determinant in Enterobacter cloacae, Klebsiella pneumoniae and Klebsiella oxytoca isolates (2010) J Antimicrob Chemother, 65, pp. 661-665; Meletis, G., Exindari, M., Vavatsi, N., Sofianou, D., Diza, E., Mechanisms responsible for the emergence of carbapenem resistance in Pseudomonas aeruginosa (2012) Hippokratia, 16, pp. 303-307; Du, D., Structure of the AcrAB-TolC multidrug efflux pump (2014) Nature, 509, pp. 512-515; Okusu, H., Ma, D., Nikaido, H., AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants (1996) Journal of Bacteriology, 178, pp. 306-308; Sun, J., Deng, Z., Yan, A., Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations (2014) Biochemical and Biophysical Research Communications, 453, pp. 254-267. , http://dx.doi.org/10.1016/j.bbrc.2014.05.090; Shi, W., Carbapenem and cefoxitin resistance of Klebsiella pneumoniae strains associated with porin OmpK36 loss and DHA-1 beta-lactamase production (2013) Braz J Microbiol, 44, pp. 435-442; Vardakas, K.Z., Tansarli, G.S., Rafailidis, P.I., Falagas, M.E., Carbapenems versus alternative antibiotics for the treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum ? -lactamases: A systematic review and meta-analysis (2012) Journal of Antimicrobial Chemotherapy, 67, pp. 2793-2803; (2013) Vital Signs: Carbapenem-Resistant Enterobacteriaceae, pp. 165-170. , CDC. (Center for Disease Control and prevention (CDC)); Ben-David, D., Outcome of carbapenem resistant Klebsiella pneumoniae bloodstream infections (2012) Clinical Microbiology and Infection, 18, pp. 54-60; Patel, G., Outcomes of carbapenem-resistant klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies (2008) Infection Control and Hospital Epidemiology, 29, pp. 1099-1106; Chang, H.-J., Risk factors and outcomes of carbapenem-nonsusceptible Escherichia coli bacteremia: A matched case-control study (2011) Journal of Microbiology, Immunology and Infection, 44, pp. 125-130; Falagas, M.E., Kopterides, P., Old antibiotics for infections in critically ill patients (2007) Current Opinion in Critical Care, 13, pp. 592-597; Falagas, M.E., Kasiakou, S.K., Saravolatz, L.D., Colistin: The revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections (2005) Clinical Infectious Diseases, 40, pp. 1333-1341; Cao, X., Molecular characterization of clinical multidrug-resistant Klebsiella pneumoniae isolates (2014) Annals of Clinical Microbiology and Antimicrobials, 13, p. 16; Paneru, T.P., Surveillance of Klebsiella pneumoniae and antibiotic resistance a retrospective and comparative study through a period in Nepal (2015) Danish Journal of Medical and Biology Sciences, pp. 29-36; Peleg, A.Y., Hooper, D.C., Hospital-acquired infections due to gram-negative bacteria (2010) N Engl J Med, 362, pp. 1804-1813; Zavascki, A.P., Carvalhaes, C.G., Picao, R.C., Gales, A.C., Multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii: Resistance mechanisms and implications for therapy (2010) Expert Rev Anti Infect Ther, 8, pp. 71-93; Piddock, L.J., Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria (2006) Clin Microbiol Rev, 19, pp. 382-402; Nikaido, H., Molecular basis of bacterial outer membrane permeability revisited (2003) Microbiol Mol Biol Rev, 67, pp. 593-656; Kaczmarek, F.M., Dib-Hajj, F., Shang, W., Gootz, T.D., High-level carbapenem resistance in a klebsiella pneumoniae clinical isolate is due to the combination of bla(ACT-1) ?-lactamase production, porin OmpK35/36 insertional inactivation, and down-regulation of the phosphate transport porin PhoE (2006) Antimicrobial Agents and Chemotherapy, 50, pp. 3396-3406; Doumith, M., Ellington, M.J., Livermore, D.M., Woodford, N., Molecular mechanisms disrupting porin expression in ertapenemresistant Klebsiella and Enterobacter spp. Clinical isolates from the UK (2009) J Antimicrob Chemother, 63, pp. 659-667; Ashour, H.M., El-Sharif, A., Species distribution and antimicrobial susceptibility of gram-negative aerobic bacteria in hospitalized cancer patients (2009) J Transl Med, 7, p. 14; Metwally, L., Gomaa, N., Attallah, M., Kamel, N., High prevalence of Klebsiella pneumoniae carbapenemase-mediated resistance in K. Pneumoniae isolates from Egypt (2013) East Mediterr Health J, 19, pp. 947-952; Pfeifer, Y., Cullik, A., Witte, W., Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens (2010) International Journal of Medical Microbiology, 300, pp. 371-379. , http://dx.doi.org/10.1016/j.ijmm.2010.04.005; Shakil, S., New Delhi metallo-beta-lactamase (NDM-1): An update (2011) J Chemother, 23, pp. 263-265; Szab�, D., Outer membrane protein changes and efflux pump expression together may confer resistance to ertapenem in enterobacter cloacae (2006) Antimicrobial Agents and Chemotherapy, 50, pp. 2833-2835; Karabinis, A., Colistin for Klebsiella pneumoniae-Associated Sepsis (2004) Clinical Infectious Diseases, 38, pp. e7-e9; Chen, J.H., Contribution of outer membrane protein K36 to antimicrobial resistance and virulence in Klebsiella pneumoniae (2010) J Antimicrob Chemother, 65, pp. 986-990; Tsai, Y.-K., Klebsiella pneumoniae outer membrane porins OmpK35 and OmpK36 play roles in both antimicrobial resistance and virulence (2011) Antimicrobial Agents and Chemotherapy, 55, pp. 1485-1493; Padilla, E., Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial resistance and virulence (2010) Antimicrob Agents Chemother, 54, pp. 177-183; Webber, M.A., Randall, L.P., Cooles, S., Woodward, M.J., Piddock, L.J.V., Triclosan resistance in Salmonella enterica serovar Typhimurium (2008) Journal of Antimicrobial Chemotherapy, 62, pp. 83-91; Struve, C., Bojer, M., Krogfelt, K.A., Characterization of Klebsiella pneumoniae type 1 fimbriae by detection of phase variation during colonization and infection and impact on virulence (2008) Infect Immun, 76, pp. 4055-4065; Langstraat, J., Bohse, M., Clegg, S., Type 3 fimbrial shaft (MrkA) of Klebsiella pneumoniae, but not the fimbrial adhesin (MrkD), facilitates biofilm formation (2001) Infect Immun, 69, pp. 5805-5812; Sahly, H., Extended-spectrum beta-lactamase production is associated with an increase in cell invasion and expression of fimbrial adhesins in Klebsiella pneumoniae (2008) Antimicrob Agents Chemother, 52, pp. 3029-3034; El Fertas-Aissani, R., Messai, Y., Alouache, S., Bakour, R., Virulence profiles and antibiotic susceptibility patterns of Klebsiella pneumoniae strains isolated from different clinical specimens (2013) Pathol Biol (Paris), 61, pp. 209-216; Schubert, S., Cuenca, S., Fischer, D., Heesemann, J., High-pathogenicity island of Yersinia pestis in enterobacteriaceae isolated from blood cultures and urine samples: Prevalence and functional expression (2000) J Infect Dis, 182, pp. 1268-1271; Autenrieth, I., Hantke, K., Heesemann, J., Immunosuppression of the host and delivery of iron to the pathogen: A possible dual role of siderophores in the pathogenesis of microbial infections? (1991) Med Microbiol Immunol, 180, pp. 135-141; Carniel, E., The Yersinia high-pathogenicity island: An iron-uptake island (2001) Microbes Infect, 3, pp. 561-569; Turton, J.F., Baklan, H., Siu, L.K., Kaufmann, M.E., Pitt, T.L., Evaluation of a multiplex PCR for detection of serotypes K1, K2 and K5 in Klebsiella sp. and comparison of isolates within these serotypes (2008) FEMS Microbiol Lett, 284, pp. 247-252; Feizabadi, M.M., Raji, N., Delfani, S., Identification of klebsiella pneumoniae K1 and K2 capsular types by PCR and quellung test (2013) Jundishapur J Microbiol, 6, p. e7585; Boccia, S., Genotypic analysis by 27A DNA fingerprinting of Candida albicans strains isolated during an outbreak in a neonatal intensive care unit (2002) Infect Control Hosp Epidemiol, 23, pp. 281-284; Lai, Y.C., Yang, S.L., Peng, H.L., Chang, H.Y., Identification of genes present specifically in a virulent strain of Klebsiella pneumoniae (2000) Infect Immun, 68, pp. 7149-7151; De Souza-Lopes, A.C., Falc�o Rodrigues, J., Ant�nio De-Morais-J�nior, M., Molecular typing of Klebsiella pneumoniae isolates from public hospitals in Recife, Brazil (2005) Microbiological Research, 160, pp. 37-46. , http://dx.doi.org/10.1016/j.micres.2004.09.007; Ashayeri-Panah, M., Feizabadi, M.M., Eftekhar, F., Correlation of multi-drug resistance, integron and blaESBL gene carriage with genetic fingerprints of extended-spectrum ?-lactamase producing klebsiella pneumoniae (2014) Jundishapur Journal of Microbiology, 7, p. e8747; Espinar, M.J., Urinary tract infections in kidney transplant patients due to Escherichia coli and klebsiella pneumoniae-producing extended-spectrum ?-lactamases: Risk factors and molecular epidemiology (2015) PLoS ONE, 10, p. e0134737; Collee, J., (2007) Mackie & Mccartney Practical Medical Microbiology, , (ed Collee, J. G., Fraser, A. G., Marimon, B. P., Simmons, A.) (Elsevier); CLSI. (Clinical and Laboratory Standards Institute, PA, USA, 2014); EUCAST. 1-91 (European committee on antimicrobil susceptibility testing, 2016); Cabral, A.B., Melo Rde, C., Maciel, M.A., Lopes, A.C., Multidrug resistance genes, including bla(KPC) and bla(CTX)-M-2, among Klebsiella pneumoniae isolated in Recife, Brazil (2012) Rev Soc Bras Med Trop, 45, pp. 572-578; Deschaght, P., Rapid genotyping of Achromobacter xylosoxidans, Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa and Stenotrophomonas maltophilia isolates using melting curve analysis of RAPD-generated DNA fragments (McRAPD) (2011) Research in Microbiology, 162, pp. 386-392. , http://dx.doi.org/10.1016/j.resmic.2011.02.002; De La-Puente-Redondo, V.A., Del Blanco, N.G., Gutierrez-Martin, C.B., Garcia-Pena, F.J., Rodriguez Ferri, E.F., Comparison of different PCR approaches for typing of Francisella tularensis strains (2000) J Clin Microbiol, 38, pp. 1016-1022; Siu, L.K., Molecular typing and virulence analysis of serotype k1 klebsiella pneumoniae strains isolated from liver abscess patients and stool samples from noninfectious subjects in Hong Kong, Singapore, and Taiwan (2011) Journal of Clinical Microbiology, 49, pp. 3761-3765; Fang, C.T., Klebsiella pneumoniae genotype K1: An emerging pathogen that causes septic ocular or central nervous system complications from pyogenic liver abscess (2007) Clin Infect Dis, 45, pp. 284-293
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
srep38929.pdf
Size:
724.26 KB
Format:
Adobe Portable Document Format
Description: