The potential effect of berberine in mercury-induced hepatorenal toxicity in albino rats

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorOthman M.S.
dc.contributor.authorSafwat G.
dc.contributor.authorAboulkhair M.
dc.contributor.authorAbdel Moneim A.E.
dc.contributor.otherFaculty of Biotechnology
dc.contributor.otherOctober University for Modern Science and Arts (MSA)
dc.contributor.otherGiza
dc.contributor.otherEgypt; Zoology and Entomology Department
dc.contributor.otherFaculty of Science
dc.contributor.otherHelwan University
dc.contributor.otherCairo
dc.contributor.otherEgypt; Biochemistry and Molecular Biology Department
dc.contributor.otherAsturias Institute of Biotechnology
dc.contributor.otherUniversity of Oviedo
dc.contributor.otherOviedo
dc.contributor.otherSpain
dc.date.accessioned2020-01-09T20:42:15Z
dc.date.available2020-01-09T20:42:15Z
dc.date.issued2014
dc.descriptionScopus
dc.descriptionMSA Google Scholar
dc.description.abstractMercury (Hg) is the third most dangerous heavy metal after arsenic and lead. Mercury's toxicity brings serious risks to health through negative pathological and biochemical effects. The study was designed to investigate the possible protective role of berberine (BN) in mercuric chloride (HgCl2) induced oxidative stress in hepatic and renal tissues. Adult male albino Wistar rats were exposed to mercuric chloride (HgCl2; 0.4mg/kg bwt) for 7days. Treatment with HgCl2 induced oxidative stress by increasing lipid peroxidation and nitric oxide production along with a concomitant decrease in glutathione and various antioxidant enzymes, namely superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. HgCl2 intoxication increased the activities of liver enzymes and the bilirubin level, in addition to the levels of urea and creatinine in serum. BN (100mg/kg bwt) treatment inhibited lipid peroxidation and nitric oxide production, whereas it increased glutathione content. Activities of antioxidants enzymes, superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase, were also restored concomitantly when compared to control after BN administration. BN also inhibited the apoptotic effect of HgCl2 by increasing the expression of Bcl-2 protein in liver and kidney. Histopathological examination of the liver and kidney tissues proved the protective effect of BN against HgCl2 toxicity. These results demonstrated that BN augments antioxidant defense against HgCl2-induced toxicity and provides evidence that it has therapeutic potential as hepato- and reno-protective agent. � 2014 Elsevier Ltd.en_US
dc.identifier.doihttps://doi.org/10.1016/j.fct.2014.04.012
dc.identifier.doiPubMedID24751971
dc.identifier.issn2786915
dc.identifier.otherhttps://doi.org/10.1016/j.fct.2014.04.012
dc.identifier.otherPubMedID24751971
dc.identifier.urihttps://t.ly/P5W6x
dc.language.isoEnglishen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofseriesFood and Chemical Toxicology
dc.relation.ispartofseries69
dc.subjectOctober University for Modern Sciences and Arts
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectUniversity of Modern Sciences and Arts
dc.subjectMSA University
dc.subjectApoptosisen_US
dc.subjectBerberineen_US
dc.subjectKidneyen_US
dc.subjectLiveren_US
dc.subjectMercuric chlorideen_US
dc.subjectOxidative stressen_US
dc.subjectberberineen_US
dc.subjectbilirubinen_US
dc.subjectcatalaseen_US
dc.subjectcreatinineen_US
dc.subjectglutathioneen_US
dc.subjectglutathione peroxidaseen_US
dc.subjectglutathione reductaseen_US
dc.subjectmercuric chlorideen_US
dc.subjectnitric oxideen_US
dc.subjectprotein bcl 2en_US
dc.subjectsuperoxide dismutaseen_US
dc.subjectureaen_US
dc.subjectantioxidanten_US
dc.subjectberberineen_US
dc.subjectenzymeen_US
dc.subjectglutathioneen_US
dc.subjectmercuric chlorideen_US
dc.subjectnitric oxideen_US
dc.subjectprotective agenten_US
dc.subjectanimal experimenten_US
dc.subjectanimal modelen_US
dc.subjectanimal tissueen_US
dc.subjectantioxidant activityen_US
dc.subjectapoptosisen_US
dc.subjectarticleen_US
dc.subjectbiosynthesisen_US
dc.subjectcontrolled studyen_US
dc.subjectdrug efficacyen_US
dc.subjectenzyme activityen_US
dc.subjecthepatorenal syndromeen_US
dc.subjectlipid peroxidationen_US
dc.subjectliver protectionen_US
dc.subjectliver toxicityen_US
dc.subjectmaleen_US
dc.subjectmercurialismen_US
dc.subjectnephrotoxicityen_US
dc.subjectnonhumanen_US
dc.subjectoxidative stressen_US
dc.subjectprotein expressionen_US
dc.subjectraten_US
dc.subjectrenal protectionen_US
dc.subjectanimalen_US
dc.subjectdrug effectsen_US
dc.subjectgene expression regulationen_US
dc.subjectgeneticsen_US
dc.subjectkidneyen_US
dc.subjectliveren_US
dc.subjectmetabolismen_US
dc.subjectpathologyen_US
dc.subjectWistar raten_US
dc.subjectAnimalsen_US
dc.subjectAntioxidantsen_US
dc.subjectBerberineen_US
dc.subjectEnzymesen_US
dc.subjectGene Expression Regulationen_US
dc.subjectGlutathioneen_US
dc.subjectKidneyen_US
dc.subjectLipid Peroxidationen_US
dc.subjectLiveren_US
dc.subjectMaleen_US
dc.subjectMercuric Chlorideen_US
dc.subjectNitric Oxideen_US
dc.subjectOxidative Stressen_US
dc.subjectProtective Agentsen_US
dc.subjectRats, Wistaren_US
dc.titleThe potential effect of berberine in mercury-induced hepatorenal toxicity in albino ratsen_US
dc.typeArticleen_US
dcterms.isReferencedByAbdel Moneim, A.E., Evaluating the potential role of pomegranate peel in aluminum-induced oxidative stress and histopathological alterations in brain of female rats (2012) Biol. Trace Elem. Res., 150, pp. 328-336; Abdel-Moneim, A.E., Dkhil, M.A., Al-Quraishy, S., The redox status in rats treated with flaxseed oil and lead-induced hepatotoxicity (2011) Biol. Trace Elem. Res., 143, pp. 457-467; Adams, D.H., Sonne, C., Basu, N., Dietz, R., Nam, D.H., Leifsson, P.S., Jensen, A.L., Mercury contamination in spotted seatrout, Cynoscion nebulosus: an assessment of liver, kidney, blood, and nervous system health (2010) Sci. Total Environ., 408, pp. 5808-5816; Aebi, H., Catalase in vitro (1984) Meth. Enzymol., 105, pp. 121-126; Belfield, A., Goldberg, D.M., Revised assay for serum phenyl phosphatase activity using 4-amino-antipyrine (1971) Enzyme, 12, pp. 561-573; Chromy, V., Rozkosna, K., Sedlak, P., Determination of serum creatinine by Jaffe method and how to calibrate to eliminate matrix interference problems (2008) Clin. Chem. Lab. Med., 46, pp. 1127-1133; Domitrovic, R., Jakovac, H., Blagojevic, G., Hepatoprotective activity of berberine is mediated by inhibition of TNF-alpha, COX-2, and iNOS expression in CCl(4)-intoxicated mice (2011) Toxicology, 280, pp. 33-43; Dong, H., Wang, N., Zhao, L., Lu, F., Berberine in the treatment of type 2 diabetes mellitus: a systemic review and meta-analysis (2012) Evid. Based Compl. Alternat. Med., 2012, p. 591654; Ejebe, D.E., Nwokocha, C., Nwangwa, E.K., Ekene, N., Akonoghrere, R., Ukwu, J., The effects of Bitter Kola supplemented diet on hepatotoxicity of mercury in Wistar rats (2010) J. Appl. Sci. Environ. Manage., 14, pp. 89-95; Ellman, G.L., Tissue sulfhydryl groups (1959) Arch. Biochem. Biophys., 82, pp. 70-77; Emsley, J., (2001) Nature's Building Blocks: An A-Z Guide to the Elements, , Oxford University Press, Oxford; Factor, V.M., Kiss, A., Woitach, J.T., Wirth, P.J., Thorgeirsson, S.S., Disruption of redox homeostasis in the transforming growth factor-alpha/c-myc transgenic mouse model of accelerated hepatocarcinogenesis (1998) J. Biol. Chem., 273, pp. 15846-15853; Feng, Y., Siu, K.Y., Ye, X., Wang, N., Yuen, M.F., Leung, C.H., Tong, Y., Kobayashi, S., Hepatoprotective effects of berberine on carbon tetrachloride-induced acute hepatotoxicity in rats (2010) Chinese Med., 5, p. 33; Flora, S.J., Mittal, M., Mehta, A., Heavy metal induced oxidative stress & its possible reversal by chelation therapy (2008) Indian J. Med. Res., 128, pp. 501-523; Franciscato, C., Moraes-Silva, L., Duarte, F.A., Oliveira, C.S., Ineu, R.P., Flores, E.M., Dressler, V.L., Pereira, M.E., Delayed biochemical changes induced by mercury intoxication are prevented by zinc pre-exposure (2011) Ecotoxicol. Environ. Saf., 74, pp. 480-486; Gado, A.M., Aldahmash, B.A., Antioxidant effect of Arabic gum against mercuric chloride-induced nephrotoxicity (2013) Drug Des. Devel. Ther., 7, pp. 1245-1252; Garber, C.C., Jendrassik-Grof analysis for total and direct bilirubin in serum with a centrifugal analyzer (1981) Clin. Chem., 27, pp. 1410-1416; Glaser, V., Nazari, E.M., Muller, Y.M., Feksa, L., Wannmacher, C.M., Rocha, J.B., de Bem, A.F., Latini, A., Effects of inorganic selenium administration in methylmercury-induced neurotoxicity in mouse cerebral cortex (2010) Int. J. Dev. Neurosci., 28, pp. 631-637; Green, L.C., Wagner, D.A., Glogowski, J., Skipper, P.L., Wishnok, J.S., Tannenbaum, S.R., Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids (1982) Anal. Biochem., 126, pp. 131-138; Huang, C.F., Hsu, C.J., Liu, S.H., Lin-Shiau, S.Y., Neurotoxicological mechanism of methylmercury induced by low-dose and long-term exposure in mice. Oxidative stress and down-regulated Na+/K(+)-ATPase involved (2008) Toxicol. Lett., 176, pp. 188-197; Janbaz, K.H., Gilani, A.H., Studies on preventive and curative effects of berberine on chemical-induced hepatotoxicity in rodents (2000) Fitoterapia, 71, pp. 25-33; Johnson, C.L., Mercury in the environment: sources, toxicities, and prevention of exposure (2004) Pediatr. Ann., 33, pp. 437-442; Kumar, S.V., Maitra, S., Bhattacharya, S., In vitro binding of inorganic mercury to the plasma membrane of rat platelet affects Na+-K+-Atpase activity and platelet aggregation (2002) Biometals, 15, pp. 51-57; Madureira, P., Cunha, E.M., Aguas, A.P., Acute depletion and recovery of peritoneal B-1 lymphocytes in BALB/c mice after a single injection of mercury chloride (2007) Immunopharmacol. Immunotoxicol., 29, pp. 311-322; Magos, L., Clarkson, T.W., Overview of the clinical toxicity of mercury (2006) Ann. Clin. Biochem., 43, pp. 257-268; Nishikimi, M., Appaji, N., Yagi, K., The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen (1972) Biochem. Biophys. Res. Commun., 46, pp. 849-854; Ohkawa, H., Ohishi, N., Yagi, K., Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction (1979) Anal. Biochem., 95, pp. 351-358; Oriquat, G.A., Saleem, T.H., Naik, R.R., Moussa, S.Z., Al-Gindy, R.M., A sub-chronic toxicity study of mercuric chloride in the rat (2012) Jordan J. Biol. Sci., 5, pp. 141-146; Paglia, D.E., Valentine, W.N., Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase (1967) J. Lab. Clin. Med., 70, pp. 158-169; Pedrycz, A., Czerny, K., Immunohistochemical study of proteins linked to apoptosis in rat fetal kidney cells following prepregnancy adriamycin administration in the mother (2008) Acta Histochem., 110, pp. 519-523; Reitman, S., Frankel, S., A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases (1957) Am. J. Clin. Pathol., 28, pp. 56-63; Sheikh, T.J., Patel, B.J., Joshi, D.V., Patel, R.B., Jegoda, M.D., Repeated dose oral toxicity of inorganic mercury in wistar rats: biochemical and morphological alterations (2013) Vet. World, 6, pp. 563-567; Sindhu, G., Susithra, M., Vijayalakshmi, N., Evaluation of hepatoprotective effect of berberine inparacetamol induced experimental hepatotoxicity in wistar rats (2012) Int. J. Recent Sci. Res., 3, pp. 569-573; Singh, I.P., Mahajan, S., Berberine and its derivatives: a patent review (2009-2012) (2013) Expert Opin. Ther. Pat., 23, pp. 215-231; Siow, Y.L., Sarna, L., Redox regulation in health and disease-therapeutic potential of berberine (2011) Food Res. Int., 44, pp. 2409-2417. , O K; Sumathi, T., Shobana, C., Christinal, J., Anusha, C., Protective effect of Bacopa monniera on methyl mercury-induced oxidative stress in cerebellum of rats (2012) Cell. Mol. Neurobiol., 32, pp. 979-987; Syversen, T., Kaur, P., The toxicology of mercury and its compounds (2012) J. Trace Elem. Med Biol., 26, pp. 215-226; Tang, L.Q., Wei, W., Chen, L.M., Liu, S., Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats (2006) J. Ethnopharmacol., 108, pp. 109-115; Wybenga, D.R., Di Giorgio, J., Pileggi, V.J., Manual and automated methods for urea nitrogen measurement in whole serum (1971) Clin. Chem., 17, pp. 891-895; Ye, X., Feng, Y., Tong, Y., Ng, K.M., Tsao, S., Lau, G.K., Sze, C., Kobayashi, S., Hepatoprotective effects of Coptidis rhizoma aqueous extract on carbon tetrachloride-induced acute liver hepatotoxicity in rats (2009) J. Ethnopharmacol., 124, pp. 130-136; Zhang, B.J., Xu, D., Guo, Y., Ping, J., Chen, L.B., Wang, H., Protection by and anti-oxidant mechanism of berberine against rat liver fibrosis induced by multiple hepatotoxic factors (2008) Clin. Exp. Pharmacol. Physiol., 35, pp. 303-309; Zhang, S., Zhang, B., Dai, W., Zhang, X., Oxidative damage and antioxidant responses in Microcystis aeruginosa exposed to the allelochemical berberine isolated from golden thread (2011) J. Plant Physiol., 168, pp. 639-643; Zhao, X., Zhang, J.J., Wang, X., Bu, X.Y., Lou, Y.Q., Zhang, G.L., Effect of berberine on hepatocyte proliferation, inducible nitric oxide synthase expression, cytochrome P450 2E1 and 1A2 activities in diethylnitrosamine- and phenobarbital-treated rats (2008) Biomed. Pharmacother., 62, pp. 567-572
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: