In silico design: Extended molecular dynamic simulations of a new series of dually acting inhibitors against EGFR and HER2

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorAhmed M.
dc.contributor.authorSadek M.M.
dc.contributor.authorAbouzid K.A.
dc.contributor.authorWang F.
dc.contributor.otherChemistry Laboratory
dc.contributor.otherFaculty of Life and Social Sciences
dc.contributor.otherSwinburne University of Technology
dc.contributor.otherHawthorn
dc.contributor.otherMelbourne
dc.contributor.otherVIC 3122
dc.contributor.otherAustralia; Pharmaceutical Organic Chemistry
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherMSA University
dc.contributor.otherEgypt; Pharmaceutical Chemistry Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherAin Shams University
dc.contributor.otherCairo 11566
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:42:28Z
dc.date.available2020-01-09T20:42:28Z
dc.date.issued2013
dc.descriptionScopus
dc.description.abstractBased on the hit structures that have been identified in our previous studies against EGFR and HER2, new potential inhibitors that share the same scaffold of the hit structures are designed and screened in silico. Insights into understanding the potential inhibitory effect of the new inhibitors against both EGFR and HER2 receptors is obtained using extended molecular dynamics (MD) simulations and different scoring techniques. The binding mechanisms and dynamics are detailed with respect to two approved inhibitors against EGFR (lapatinib) and HER2 (SYR127063). The best scoring inhibitor (T9) is chosen for additional in silico investigation against both the wild-type and T790M mutant strain of EGFR and the wild-type HER2. The results reveal that certain substitution patterns increase the stability and assure stronger binding and higher H-bond occupancy of the conserved water molecule that is commonly observed with kinase crystal structures. Furthermore, the new inhibitor (T9) forms stable interactions with the mutant strain as a direct consequence of the enhanced ability to form additional hydrogen bonding interactions with binding site residues. 2013 Elsevier Ltd. All rights reserved.en_US
dc.identifier.doihttps://doi.org/10.1016/j.jmgm.2013.06.004
dc.identifier.doiPubMed ID 23911931
dc.identifier.issn10933263
dc.identifier.otherhttps://doi.org/10.1016/j.jmgm.2013.06.004
dc.identifier.otherPubMed ID 23911931
dc.identifier.urihttps://t.ly/ndwze
dc.language.isoEnglishen_US
dc.publisherElsevier Inc.en_US
dc.relation.ispartofseriesJournal of Molecular Graphics and Modelling
dc.relation.ispartofseries44
dc.subjectOctober University for Modern Sciences and Arts
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectUniversity of Modern Sciences and Arts
dc.subjectMSA University
dc.subjectAM1-Den_US
dc.subjectEGFR/HER2en_US
dc.subjectMolecular dynamicsen_US
dc.subjectTyrosine kinaseen_US
dc.subjectWater occupancyen_US
dc.subjectAmino acidsen_US
dc.subjectBinsen_US
dc.subjectEnzymesen_US
dc.subjectHydrogen bondsen_US
dc.subjectMoleculesen_US
dc.subjectScaffoldsen_US
dc.subjectBinding mechanismsen_US
dc.subjectEGFR/HER2en_US
dc.subjectHydrogen bonding interactionsen_US
dc.subjectMolecular dynamics simulationsen_US
dc.subjectPotential inhibitorsen_US
dc.subjectScoring techniquesen_US
dc.subjectSubstitution patternsen_US
dc.subjectTyrosine kinaseen_US
dc.subjectMolecular dynamicsen_US
dc.subjectepidermal growth factor receptor kinase inhibitoren_US
dc.subjecterlotiniben_US
dc.subjectgefitiniben_US
dc.subjectlapatiniben_US
dc.subjectprotein tyrosine kinase inhibitoren_US
dc.subjectquinazoline derivativeen_US
dc.subjectsyr 127063en_US
dc.subjectunclassified drugen_US
dc.subjectarticleen_US
dc.subjectbinding siteen_US
dc.subjectcrystal structureen_US
dc.subjecthydrogen bonden_US
dc.subjectmolecular dynamicsen_US
dc.subjectnonhumanen_US
dc.subjectpriority journalen_US
dc.subjectsimulationen_US
dc.subjectAM1-Den_US
dc.subjectEGFR/HER2en_US
dc.subjectMolecular dynamicsen_US
dc.subjectTyrosine kinaseen_US
dc.subjectWater occupancyen_US
dc.subjectBinding Sitesen_US
dc.subjectComputer Simulationen_US
dc.subjectDrug Designen_US
dc.subjectHumansen_US
dc.subjectLigandsen_US
dc.subjectMolecular Conformationen_US
dc.subjectMolecular Docking Simulationen_US
dc.subjectMolecular Dynamics Simulationen_US
dc.subjectProtein Bindingen_US
dc.subjectProtein Kinase Inhibitorsen_US
dc.subjectQuantitative Structure-Activity Relationshipen_US
dc.subjectReceptor, Epidermal Growth Factoren_US
dc.subjectReceptor, erbB-2en_US
dc.subjectWateren_US
dc.titleIn silico design: Extended molecular dynamic simulations of a new series of dually acting inhibitors against EGFR and HER2en_US
dc.typeArticleen_US
dcterms.isReferencedByJohnston, J.B., Navaratnam, S., Pitz, M.W., Maniate, J.M., Wiechec, E., Baust, H., Gingerich, J., Los, M., Targeting the EGFR pathway for cancer therapy (2006) Current Medicinal Chemistry, 13 (29), pp. 3483-3492. , http://www.ingentaconnect.com/content/ben/cmc/2006/00000013/00000029/ art00001, DOI 10.2174/092986706779026174; Levitzki, A., Tyrosine kinase inhibitors: Views of selectivity, sensitivity, and clinical performance (2012) Annual Review of Pharmacology and Toxicology, 53, pp. 161-185; Cheng, Y., Cui, W., Chen, Q., Tung, C.-H., Ji, M., Zhang, F., The molecular mechanism studies of chirality effect ofPHA-739358 on Aurora kinase A by molecular dynamics simulation and free energy calculations (2011) Journal of Computer-Aided Molecular Design, 25, pp. 171-180; Wu, K.-W., Chen, P.C., Wang, J., Sun, Y.-C., Computation of relative binding free energy for an inhibitor and its analogs binding with Erk kinase using thermodynamic integration MD simulation (2012) Journal of Computer-Aided Molecular Design, 26, pp. 1159-1169; Knight, Z.A., Shokat, K.M., Features of selective kinase inhibitors (2005) Chemistry and Biology, 12 (6), pp. 621-637. , DOI 10.1016/j.chembiol.2005.04.011; Cohen, P., Protein kinases - The major drug targets of the twenty-first century? (2002) Nature Reviews Drug Discovery, 1 (4), pp. 309-315; Roymans, D., Slegers, H., Phosphatidylinositol 3-kinases in tumor progression (2001) European Journal of Biochemistry, 268 (3), pp. 487-498. , DOI 10.1046/j.1432-1327.2001.01936.x; Malumbres, M., Barbacid, M., Cell cycle kinases in cancer (2007) Current Opinion in Genetics and Development, 17 (1), pp. 60-65. , DOI 10.1016/j.gde.2006.12.008, PII S0959437X06002425, Genetic and Cellular mechanisms of oncogenesis; Daub, H., Specht, K., Ullrich, A., Strategies to overcome resistance to targeted protein kinase inhibitors (2004) Nature Reviews Drug Discovery, 3 (12), pp. 1001-1010. , DOI 10.1038/nrd1579; Ahmed, M., Sadek, M.M., Serrya, R.A., Kafafy, A.-H.N., Abouzid, K.A., Wang, F., Assessment of new anti-HER2 ligands using combined docking, QM/MM scoring and MD simulation (2013) Journal of MolecularGraphics and Modelling, 40, pp. 91-98; Sadek, M.M., Serrya, R.A., Kafafy, A.-H.N., Ahmed, M., Wang, F., Abouzid, K.A.M., Discovery of new HER2/EGFR dual kinase inhibitors based on the anilinoquina-zoline scaffold as potential anti-cancer agents (2013) Journal of Enzyme Inhibition and Medicinal Chemistry, 1, pp. 1-8; Balius, T.E., Rizzo, R.C., Quantitative prediction of fold resistance for inhibitors of EGFR (2009) Biochemistry, 48, pp. 8435-8448; Yang, Y., Qin, J., Liu, H., Yao, X., Molecular dynamics simulation, free energy calculation and structure-based 3D-QSAR studies of B-RAF kinase inhibitors (2011) Journal of Chemical Information and Modeling, 51, pp. 680-692; Liu, Y., Gray, N.S., Rational design of inhibitors that bind to inactive kinase conformations (2006) Nature Chemical Biology, 2 (7), pp. 358-364. , DOI 10.1038/nchembio799, PII N799; Cho, A.E., Guallar, V., Berne, B.J., Friesner, R., Importance of accurate charges in molecular docking: Quantum Mechanical/Molecular Mechanical (QM/MM) approach (2005) Journal of Computational Chemistry, 26 (9), pp. 915-931. , DOI 10.1002/jcc.20222; Chung, J.Y., Hah, J.-M., Cho, A.E., Correlation between performance of QM/MM docking and simple classification of binding sites (2009) Journal of Chemical Information and Modeling, 49, pp. 2382-2387; Waszkowycz, B., Clark, D.E., Gancia, E., Outstanding challenges in protein-ligand docking and structure-based virtual screening (2011) WIREs Computational Molecular Science, 1, pp. 229-259; Cavasotto, C.N., Abagyan, R.A., Protein flexibility in ligand docking and virtual screening to protein kinases (2004) Journal of Molecular Biology, 337, pp. 209-226; Chandrika, B., Subramanian, J., Sharma, S.D., Managing protein flexibility in docking and its applications (2009) Drug Discovery Today, 14, pp. 394-400; Carlson, H.A., Protein flexibility is an important component of structure-based drug discovery (2002) Current Pharmaceutical Design, 8 (17), pp. 1571-1578. , DOI 10.2174/1381612023394232; Wood, E.R., Truesdale, A.T., McDonald, O.B., Yuan, D., Hassell, A., Dickerson, S.H., Ellis, B., Shewchuk, L., A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): Relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells (2004) Cancer Research, 64 (18), pp. 6652-6659. , DOI 10.1158/0008-5472.CAN-04-1168; Aertgeerts, K., Skene, R., Yano, J., Sang, B.C., Zou, H., Snell, G., Jennings, A., Hirokawa, A., Structural analysis ofthe mechanism of inhibition and allosteric activation ofthe kinase domain of HER2 protein (2011) Journal of Biological Chemistry, 286, pp. 18756-18765; Pao, W., Miller, V.A., Politi, K.A., Riely, G.J., Somwar, R., Zakowski, M.F., Kris, M.G., Varmus, H., Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain (2005) PLoS Medicine, 2, pp. e73; Yun, C.-H., Mengwasser, K.E., Toms, A.V., Woo, M.S., Greulich, H., Wong, K.-K., Meyerson, M., Eck, M.J., The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP (2008) Proceedings of the National Academy of Sciences of the United States of America, 105 (6), pp. 2070-2075. , http://www.pnas.org/cgi/reprint/105/6/2070, DOI 10.1073/pnas.0709662105; Godin-Heymann, N., Ulkus, L., Brannigan, B.W., McDermott, U., Lamb, J., Maheswaran, S., Settleman, J., Haber, D.A., The T790M ";gatekeeper" mutation in EGFR mediates resistance to low concentrations of an irreversible EGFR inhibitor (2008) Molecular Cancer Therapeutics, 7 (4), pp. 874-879. , http://mct.aacrjournals.org/cgi/reprint/7/4/874, DOI 10.1158/1535-7163.MCT-07-2387; Gilmer, T.M., Cable, L., Alligood, K., Rusnak, D., Spehar, G., Gallagher, K.T., Woldu, E., Wood, E.R., Impact of common epidermal growth factor receptor and HER2 variants on receptor activity and inhibition by lapatinib (2008) Cancer Research, 68 (2), pp. 571-579. , http://cancerres.aacrjournals.org/cgi/reprint/68/2/571, DOI 10.1158/0008-5472.CAN-07-2404; Huang, Y., Rizzo, R.C., A water-based mechanism of specificity and resistance for lapatinib with ErbB family kinases (2012) Biochemistry, 51, pp. 2390-2406; Yun, C.-H., Mengwasser, K.E., Toms, A.V., Woo, M.S., Greulich, H., Wong, K.-K., Meyerson, M., Eck, M.J., The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP (2008) Proceedings of the National Academy of Sciences of the United States of America, 105 (6), pp. 2070-2075. , http://www.pnas.org/cgi/reprint/105/6/2070, DOI 10.1073/pnas.0709662105; Stamos, J., Sliwkowski, M.X., Eigenbrot, C., Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor (2002) Journal of Biological Chemistry, 277 (48), pp. 46265-46272. , DOI 10.1074/jbc.M207135200; Friesner, R.A., Murphy, R.B., Repasky, M.P., Frye, L.L., Greenwood, J.R., Halgren, T.A., Sanschagrin, P.C., Mainz, D.T., Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes (2006) Journal of Medicinal Chemistry, 49 (21), pp. 6177-6196. , DOI 10.1021/jm051256o; , p. 2011. , Glide, version 5. 7, Schrdinger, LLC, New York, NY; Aparna, V., Rambabu, G., Panigrahi, S.K., Sarma, J.A.R.P., Desiraju, G.R., Virtual screening of 4-anilinoquinazoline analogues as EGFR kinase inhibitors: Importance of hydrogen bonds in the evaluation of poses and scoring functions (2005) Journal of Chemical Information and Modeling, 45 (3), pp. 725-738. , DOI 10.1021/ci049676u; Zhang, B., Tan, V.B.C., Lim, K.M., Tay, T.E., Significance of water molecules in the inhibition of cylin-dependent kinase 2 and 5 complexes (2007) Journal of Chemical Information and Modeling, 47 (5), pp. 1877-1885. , DOI 10.1021/ci700137c; Muzzioli, E., Del Rio, A., Rastelli, G., Assessing protein kinase selectivity with molecular dynamics and MM-PBSA binding free energy calculations (2011) Chemical Biology & Drug Design, 78, pp. 252-259; Barillari, C., Duncan, A.L., Westwood, I.M., Blagg, J., Van Montfort, R.L.M., Analysis of water patterns in protein kinase binding sites (2011) Proteins: Structure, Function, and Bioinformatics, 79, pp. 2109-2121; (2011), MacroModel, Version 9. 9, Schrdinger, LLC, New York, NY; Case, D.A., Darden, T.A., Cheatham III, T.E., Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Kollman, P.A., (2012) AMBER 12, , University of California, San Francisco; Duan, Y., Wu, C., Chowdhury, S., Lee, M.C., Xiong, G., Zhang, W., Yang, R., Kollman, P., A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations (2003) Journal of Computational Chemistry, 24, pp. 1999-2012; Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Simmerling, C., Comparison of multiple amber force fields and development of improved protein backbone parameters (2006) Proteins: Structure, Function and Genetics, 65 (3), pp. 712-725. , DOI 10.1002/prot.21123; Mennucci, B., Tomasi, J., Cammi, R., Cheeseman, J.R., Frisch, M.J., Devlin, F.J., Gabriel, S., Stephens, P.J., Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules (2002) Journal of Physical Chemistry A, 106 (25), pp. 6102-6113. , DOI 10.1021/jp020124t; Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., (2009) Gaussian 09, , Revision A.1, Gaussian, Inc., Wallingford CT; Bayly, C.I., Cieplak, P., Cornell, W., Kollman, P.A., A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model (1993) Journal of Physical Chemistry, 97, pp. 10269-10280; Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A., Development and testing of a general AMBER force field (2004) Journal of Computational Chemistry, 25, pp. 1157-1174; Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of simple potential functions for simulating liquid water (1983) Journal of Chemical Physics, 79, pp. 926-935; Ryckaert, J.-P., Ciccotti, G., Berendsen, H.J.C., Numerical integration ofthe Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes (1977) Journal of Computational Physics, 23, pp. 327-341; Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., Dinola, A., Haak, J.R., Molecular dynamics with coupling to an external bath (1984) Journal of Chemical Physics, 81, pp. 3684-3690; Darden, T., York, D., Pedersen, L., Particle mesh Ewald: An iVlog(iV) method for Ewald sums in large systems (1993) Journal of Chemical Physics, 98, pp. 10089-10092; Miller, B.R., McGee, T.D., Swails, J.M., Homeyer, N., Gohlke, H., Roitberg, A.E., MMPBSA.Py: An efficient program for end-state free energy calculations (2012) Journal of Chemical Theory and Computation, 8, pp. 3314-3321; (2011), Prime, Version 3.0, Schrdinger, LLC, New York; Jacobson, M.P., Pincus, D.L., Rapp, C.S., Day, T.J.F., Honig, B., Shaw, D.E., Friesner, R.A., A hierarchical approach to all-atom protein loop prediction (2004) Proteins: Structure, Function and Genetics, 55 (2), pp. 351-367. , DOI 10.1002/prot.10613; Du, J., Sun, H., Xi, L., Li, J., Yang, Y., Liu, H., Yao, X., Molecular modeling study of checkpoint kinase 1 inhibitors by multiple docking strategies and prime/MM-GBSA calculation (2011) Journal of Computational Chemistry, 32, pp. 2800-2809; Walker, R.C., Crowley, M.F., Case, D.A., The implementation of a fast and accurate QM/MM potential method in AMBER (2007) Journal of Computational Chemistry, 29, pp. 1019-1031; McNamara, J.P., Hillier, I.H., Semi-empirical molecular orbital methods including dispersion corrections for the accurate prediction ofthe full range of inter-molecular interactions in biomolecules (2007) Physical Chemistry Chemical Physics, 9, pp. 2362-2370; Grater, F., Schwarzl, S.M., Dejaegere, A., Fischer, S., Smith, J.C., Protein/ligand binding free energies calculated with quantum mechanics/molecular mechanics (2005) Journal of Physical Chemistry B, 109 (20), pp. 10474-10483. , DOI 10.1021/jp044185y; Villar, R., Gil, M.J., Garcia, J.I., Martivez-Merino, V., Are AM1 ligand-protein binding enthalpies good enough for use in the rational design of new drugs? (2005) Journal of Computational Chemistry, 26 (13), pp. 1347-1358. , DOI 10.1002/jcc.20276; Alves, C.N., Marti, S., Castillo, R., Andres, J., Moliner, V., Tunon, I., Silla, E., A quantum mechanics/molecular mechanics study of the protein-ligand interaction for inhibitors of HIV-1 integrase (2007) Chemistry - A European Journal, 13 (27), pp. 7715-7724. , DOI 10.1002/chem.200700040; Traxler, P., Furet, P., Strategies toward the design of novel and selective protein tyrosine kinase inhibitors (1999) Pharmacology and Therapeutics, 82 (2-3), pp. 195-206. , DOI 10.1016/S0163-7258(98)00044-8, PII S0163725898000448; Noble, M.E.M., Endicott, J.A., Johnson, L.N., Protein kinase inhibitors: Insights into drug design from structure (2004) Science, 303 (5665), pp. 1800-1805. , DOI 10.1126/science.1095920; Oruganty, K., Kannan, N., Design principles underpinning the regulatory diversity of protein kinases (2012) Philosophical Transactions of the Royal Society B: Biological Sciences, 367, pp. 2529-2539; Zuccotto, F., Ardini, E., Casale, E., Angiolini, M., Through the "gatekeeper door": Exploiting the active kinase conformation (2009) Journal of Medicinal Chemistry, 53, pp. 2681-2694; Noble, M.E.M., Endicott, J.A., Johnson, L.N., Protein kinase inhibitors: Insights into drug design from structure (2004) Science, 303 (5665), pp. 1800-1805. , DOI 10.1126/science.1095920; Songtawee, N., Gleeson, M.P., Choowongkomon, K., Computational study of EGFR inhibition: Molecular dynamics studies on the active and inactive protein conformations (2012) Journal of Molecular Modeling, 19, pp. 1-13; Seeliger, M.A., Ranjitkar, P., Kasap, C., Shan, Y., Shaw, D.E., Shah, N.P., Kuriyan, J., Maly, D.J., Equally potent inhibition of c-Src and Abl by compounds that recognize inactive kinase conformations (2009) Cancer Research, 69, pp. 2384-2392; Bogoyevitch, M.A., Fairlie, D.P., A new paradigm for protein kinase inhibition: Blocking phosphorylation without directly targeting ATP binding (2007) Drug Discovery Today, 12 (15-16), pp. 622-633. , DOI 10.1016/j.drudis.2007.06.008, PII S1359644607002553; Yoshikawa, S., Kukimoto-Niino, M., Parker, L., Handa, N., Terada, T., Fujimoto, T., Terazawa, Y., Sano, S., Structural basis for the altered drug sensitivities of non-small cell lung cancer-associated mutants of human epidermal growth factor receptor (2012) Oncogene, 32, pp. 27-38; Muhsin, M., Graham, J., Kirkpatrick, P., (2003) Gefitinib Nature Reviews: Drug Discovery, 2, pp. 515-516; Nelson, M.H., Dolder, C.R., Lapatinib: A novel dual tyrosine kinase inhibitor with activity in solid tumors (2006) Annals of Pharmacotherapy, 40 (2), pp. 261-269. , DOI 10.1345/aph.1G387; Montemurro, F., Valabrega, G., Aglietta, M., Lapatinib: A dual inhibitor of EGFR and HER2 tyrosine kinase activity (2007) Expert Opinion on Biological Therapy, 7 (2), pp. 257-268. , DOI 10.1517/14712598.7.2.257; Balius, T.E., Rizzo, R.C., Balius, T.E., Rizzo, R.C., Quantitative prediction of fold resistance for inhibitors of EGFR (2009) Biochemistry, 48, pp. 8435-8448; Lu, S.-Y., Jiang, Y.-J., Lv, J., Zou, J.-W., Wu, T.-X., Role of bridging water molecules in GSK3�-inhibitor complexes: Insights from QM/MM, MD, and molecular docking studies (2011) Journal of Computational Chemistry, 32, pp. 1907-1918; Kaur, M., Bahia, M.S., Silakari, O., Exploring the role of water molecules for docking and receptor guided 3D-QSAR analysis of naphthyridine derivatives as spleen tyrosine kinase (Syk) inhibitors (2012) Journal of Chemical Information and Modeling, 52, pp. 2619-2630; Rewcastle, G.W., Denny, W.A., Bridges, A.J., Zhou, H., Cody, D.R., McMichael, A., Fry, D.W., Tyrosine kinase inhibitors. 5. Synthesis and structure-activity relationships for 4-[(phenylmethyl)amino]-and 4-(phenylamino)quinazolines as potent adenosine 5'triphosphate binding site inhibitors of the tyrosine kinase domain of the epidermal growth factor receptor (1995) Journal of Medicinal Chemistry, 38, pp. 3482-3487; Wissner, A., Berger, D.M., Boschelli, D.H., Floyd, Jr.M.B., Greenberger, L.M., Gruber, B.C., Johnson, B.D., Reichf, F.M., 4-Anilino-6, 7-dialkoxyquinoline-3-carbonitrile inhibitors of epidermal growth factor receptor kinase and their bioisosteric relationship to the 4-anilino-6, 7-dialkoxyquinazoline inhibitors (2000) Journal of Medicinal Chemistry, 43, pp. 3244-3256; Boschelli, D.H., 4-Anilino-3-quinolinecarbonitriles: An emerging class of kinase inhibitors (2002) Current Topics in Medicinal Chemistry, 2, pp. 1051-1063; Nandi, S., Bagchi, M., 3D-QSAR and molecular docking studies of 4-anilinoquinazoline derivatives: A rational approach to anticancer drug design (2010) Molecular Diversity, 14, pp. 27-38; Bridges, A.J., Zhou, H., Cody, D.R., Rewcastle, G.W., McMichael, A., Showalter, H.D.H., Fry, D.W., Denny, W.A., Tyrosine kinase inhibitors. 8. An unusually steep structure-activity relationship for analogues of 4(3-bromoanilino)-6, 7-dimethoxyquinazoline (PD 153035), a potent inhibitor of the epidermal growth factor receptor (1996) Journal of Medicinal Chemistry, 39, pp. 267-276; Kamath, S., Buolamwini, J.K., Targeting EGFR and HER-2 receptor tyrosine kinases for cancer drug discovery and development (2006) Medicinal Research Reviews, 26 (5), pp. 569-594. , DOI 10.1002/med.20070; Pawar, V.G., Sos, M.L., Rode, H.B., Rabiller, M., Heynck, S., Van Otterlo, W.A.L., Thomas, R.K., Rauh, D., Synthesis and biological evaluation of 4-anilinoquinolines as potent inhibitors of epidermal growth factor receptor (2010) Journal of Medicinal Chemistry, 53, pp. 2892-2901; Liu, B., Bernard, B., Wu, J.H., Impact of EGFR point mutations on the sensitivity to gefitinib: Insights from comparative structural analyses and molecular dynamics simulations (2006) Proteins: Structure, Function and Genetics, 65 (2), pp. 331-346. , DOI 10.1002/prot.21111; Gazdar, A.F., Activating and resistance mutations of EGFR in non-small-cell lung cancer: Role in clinical response to EGFR tyrosine kinase inhibitors (2009) Oncogene, 28, pp. S24-S31; Nguyen, K.-S.H., Kobayashi, S., Costa, D.B., Acquired resistance to epidermal growth factor receptortyrosine kinase inhibitors in non-small-cell lung cancers dependent on the epidermal growth factor receptor pathway (2009) Clinical Lung Cancer, 10, pp. 281-289; Dienstmann, R., De Dosso, S., Felip, E., Tabernero, J., Drug development to overcome resistance to EGFR inhibitors in lung and colorectal cancer (2012) Molecular Oncology, 6, pp. 15-26; Zhou, W., Ercan, D., Chen, L., Yun, C.H., Li, D., Capelletti, M., Cortot, A.B., Padera, R., Novel mutant-selective EGFR kinase inhibitors against EGFRT790M (2009) Nature, 462, pp. 1070-1074; Hou, T., Wang, J., Li, Y., Wang, W., Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking (2011) Journal of Computational Chemistry, 32, pp. 866-877; Hou, T., Wang, J., Li, Y., Wang, W., Assessing the performance of the MM/PBSA and MM/GBSA Methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations (2010) Journal of Chemical Information and Modeling, 51, pp. 69-82
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: