Design and synthesis of thiazol derivatives with biological evaluations as antitumor agents

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorEl-Sharkawy K.A.
dc.contributor.authorEl-Brrati M.M.A.
dc.contributor.authorGhardaly I.A.
dc.contributor.authorAli M.
dc.contributor.otherMohareb, R.M., Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt; Abdo, N.Y.M., Chemistry Department, Faculty of Education, Alexandria University, Alexandria, 21526, Egypt; El-Sharkawy, K.A., Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, 45142, Saudi Arabia, Department of Chemistry, Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), El-Wahat Road, 6th October City, Cairo, Egypt
dc.date.accessioned2020-01-09T20:40:23Z
dc.date.available2020-01-09T20:40:23Z
dc.date.issued2015
dc.description.abstractBackground: Among the wide range of heterocycles, tetrahydrobenzothienopyridine derivatives acquired a special attention due to their wide range of pharmacological activities especially the therapeutic activities. Many pharmacological drugs containing the thiophene nucleus were known in the market. Method: A series of tetrahydrobenzothienopyridine derivatives were synthesized from the reaction of 2-amino- 3-benzoyl-4,5-dihydrobenzo[b]thiophen-6(7H)-one, synthesized and used for further heterocyclization reactions through reaction with different reagents. Results: Antiproliferative evaluations and c-Met kinase, Pim-1 kinase inhibitions were performed where some compounds revealed high activities. Conclusion: The inhibition of the newly synthesized compounds towards c-Met kinase, the five c-Metdependent cancer cell lines (A549, HT-29, MKN-45, U87MG, and SMMC-7721) and one c-Met-independent cancer cell line (H460) were investigated using foretinib as a standard drug. The results showed that compounds 6b, 7e, 9b, 9e, 16c and 20d were more active than foretinib. Furthermore, compounds 6b, 13b, 16b and 16c were selected to examine their Pim-1 kinase inhibition activity, where compounds 16b and 16c were of high potencies with IC50 values of 0.28 and 0.32 ?M, while compounds 6b and 13b were less effective (IC50 > 10 ?M). � 2018 Bentham Science Publishers.en_US
dc.identifier.doihttps://doi.org/10.5958/0974-360X.2015.00087.6
dc.identifier.issn18715206
dc.identifier.otherhttps://doi.org/10.5958/0974-360X.2015.00087.6
dc.identifier.urihttps://t.ly/1VV9M
dc.language.isoen_USen_US
dc.publisherBentham Science Publishers B.V.en_US
dc.relation.ispartofseriesResearch Journal of Pharmacy and Technology
dc.relation.ispartofseries8
dc.subjectOctober University for Modern Sciences and Arts
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectUniversity of Modern Sciences and Arts
dc.subjectMSA University
dc.subjectKinase inhibitoren_US
dc.subjectPyranen_US
dc.subjectPyridineen_US
dc.subjectThiazoleen_US
dc.subjectThienopyridineen_US
dc.subjectThiopheneen_US
dc.subject2 amino 3 benzoyl 4 5 dihydrobenzo[b]thiophen 6(7h) oneen_US
dc.subject2 amino 7 oxo 4 phenyl 5 6 7 8 tetrahydrobenzo[4 5]thieno[2 3b]pyridine 3 carbonitrileen_US
dc.subject2 amino 7 oxo 4 phenyl 8 (2 phenylhydrazono) 5 6 7 8 tetrahydrobenzo[4 5]thieno[2 3 b]pyridine 3 carbonitrileen_US
dc.subject2 amino 7 oxo 4 phenyl 8 2 amino 8 (2 (4 chlorophenyl)hydrazono) 7 oxo 4 phenyl 5 67 8 tetrahydrobenzo [4 5]thieno[2 3 b]pyridine 3 carbonitrileen_US
dc.subject2 amino 8 (2 (4 methoxyphenyl)hydrazono) 7 oxo 4 phenyl 5 6 7 8 tetrahydrobenzo [4 5]thieno[2 3 b]pyridine 3 carbonitrileen_US
dc.subject2 hydroxy 7 oxo 4 phenyl 5 6 7 8 tetrahydrobenzo[4 5]thieno[2 3 b]pyridine 3 carbonitrileen_US
dc.subject2 hydroxy 7 oxo 4 phenyl 8 (2 phenylhydrazono) 5 6 7 8 tetrahydrobenzo[4 5]thieno[2 3 b]pyridine 3 carbonitrileen_US
dc.subject2 hydroxy 8 (2 (4 methoxyphenyl)hydrazono) 7 oxo 4 phenyl 5 6 7 8 tetrahydrobenzo[4 5]thieno[2 3 b]pyridine 3 carbonitrileen_US
dc.subject3 9 diamino 1 (4 bromophenyl) 7 phenyl 1 4 5 6 tetrahydropyrido[3 2 :4 5]thieno[2 3 f]quinoline 2 8 dicarbonitrileen_US
dc.subject3 9 diamino 1 (4 bromophenyl) 7 phenyl 5 6 dihydro 1hchromeno[6 5 :4 5]thieno[2 3 b]pyridine 2 8 dicarbonitrileen_US
dc.subject3 9 diamino 1 (4 chlorophenyl) 7 phenyl 1 4 5 6 tetrahydropyrido[3 2 :4 5]thieno[2 3 f]quinoline 2 8 dicarbonitrileen_US
dc.subject3 9 diamino 1 (4 chlorophenyl) 7 phenyl 5 6 dihydro 1hchromeno[6 5 :4 5]thieno[2 3 b]pyridine 2 8 dicarbonitrileen_US
dc.subject3 9 diamino 1 7 diphenyl 1 4 5 6 tetrahydropyrido[3 2 :4 5]thieno[2 3 f]quinoline 2 8 dicarbonitrileen_US
dc.subject3 amino 1 (4 bromophenyl) 9 hydroxy 7 phenyl 5 6 dihydro 1hchromeno[6 5 :4 5] thieno[2 3 b]pyridine 2 8 dicarbonitrileen_US
dc.subject3 amino 1 (4 chlorophenyl) 9 hydroxy 7 phenyl 5 6 dihydro 1hchromeno[6 5 :4 5] thieno[2 3 b]pyridine 2 8 dicarbonitrileen_US
dc.subject3 amino 9 hydroxy 1 7 diphenyl 1 4 5 6 tetrahydropyrido[2 :4 5]thieno[2 3 f]quinoline 2 8 dicarbonitrileen_US
dc.subject3 amino 9 hydroxy 1 7 diphenyl 5 6 dihydro 1h chromeno[6 5 :4 5]thieno[2 3 b]pyridine 2 8 dicarbonitrileen_US
dc.subject5 6 7 8 tetrahydrobenzo[4 5]thieno[2 3 b]pyridineen_US
dc.subject5 6 dihydro 1h chromeno[6 5 :4 5]thieno[2 3 b]pyridineen_US
dc.subject8 (2 (4 chlorophenyl)hydrazono) 2 hydroxy 7 oxo 4 phenyl 5 6 7 8 tetrahydrobenzo [4 5]thieno[2 3 b]pyridine 3 carbonitrileen_US
dc.subject8 (2 2 hydroxy 8 (2 (4 methoxyphenyl)hydrazono) 7 oxo 4 phenyl 5 6 7 8 tetrahydrobenzo[4 5]thieno[2 3 b]pyridine 3 carbonitrileen_US
dc.subjectandrogen receptoren_US
dc.subjectantineoplastic agenten_US
dc.subjectcclohexane 1 4 dioneen_US
dc.subjectprotein kinase Pim 1en_US
dc.subjectprotein tyrosine kinaseen_US
dc.subjectscatter factor receptoren_US
dc.subjecttetrahydrobenzothienopyridineen_US
dc.subjectthienopyridine derivativeen_US
dc.subjectunclassified drugen_US
dc.subjectunindexed drugen_US
dc.subjectantineoplastic agenten_US
dc.subjectcyclohexanone derivativeen_US
dc.subjectprotein kinase inhibitoren_US
dc.subjectprotein kinase Pim 1en_US
dc.subjectpyridine derivativeen_US
dc.subjectantineoplastic activityen_US
dc.subjectantiproliferative activityen_US
dc.subjectArticleen_US
dc.subjectcancer cell lineen_US
dc.subjectcell growthen_US
dc.subjectcell proliferationen_US
dc.subjectcolon canceren_US
dc.subjectcontrolled studyen_US
dc.subjectdrug synthesisen_US
dc.subjectelemental analysisen_US
dc.subjectenzyme activityen_US
dc.subjectenzyme substrateen_US
dc.subjectGI50en_US
dc.subjecthumanen_US
dc.subjecthuman cellen_US
dc.subjectIC50en_US
dc.subjectinfrared spectroscopyen_US
dc.subjectlung canceren_US
dc.subjectMTT assayen_US
dc.subjectnon small cell lung canceren_US
dc.subjectprostate canceren_US
dc.subjectprotein expressionen_US
dc.subjectradiosensitivityen_US
dc.subjectstomach canceren_US
dc.subjectantagonists and inhibitorsen_US
dc.subjectchemical structureen_US
dc.subjectchemistryen_US
dc.subjectdose responseen_US
dc.subjectdrug effecten_US
dc.subjectdrug screeningen_US
dc.subjectmetabolismen_US
dc.subjectstructure activity relationen_US
dc.subjectsynthesisen_US
dc.subjecttumor cell lineen_US
dc.subjectAntineoplastic Agentsen_US
dc.subjectCell Line, Tumoren_US
dc.subjectCell Proliferationen_US
dc.subjectCyclohexanonesen_US
dc.subjectDose-Response Relationship, Drugen_US
dc.subjectDrug Screening Assays, Antitumoren_US
dc.subjectHumansen_US
dc.subjectMolecular Structureen_US
dc.subjectProtein Kinase Inhibitorsen_US
dc.subjectProto-Oncogene Proteins c-pim-1en_US
dc.subjectPyridinesen_US
dc.subjectStructure-Activity Relationshipen_US
dc.titleDesign and synthesis of thiazol derivatives with biological evaluations as antitumor agentsen_US
dc.typeArticleen_US
dcterms.isReferencedBySangshetti, J.N., Dharmadhikari, P.P., Chouthe, R.S., Fatema, B., Lad, V., Karande, V., Darandale, S.N., Shinde, D.B., Microwave assisted nano (ZnO-TiO2) catalyzed synthesis of some new 4,5,6,7-tetrahydro-6-((5-substitituted-1,3,4-oxadia-diazol-2-yl)methyl)thieno [2,3-c]pyridine as antimicrobial agents (2013) Bioorg. Med. Chem. Lett, 23, pp. 2250-2253; Challa, N.R., Mamidisetty, B., Ghanta, M.R., Padi, P.R., Synthesis and pharmacological evaluation of 5-[2?-(1H-tetrazol-5-yl)-biphenyl-4-ylmethyl]4,5,6,7-tetrahydro-thieno [3,2-c] pyridine derivatives as platelet aggregation inhibitors (2014) J. Saudi Chem. Soc, 18, pp. 513-519; Yao, K., Zhao, M., Zhang, X., Wang, Y., Li, L., Zheng, M., Pen, S., A class of oral N-[(1S,3S)-1-methyl-1,2,3,4-tetrahydro-?-carboline-3-carbonyl]-N ?-(amino-acid-acyl)hydrazine: Discovery, synthesis, in vitro anti-platelet aggregation/in vivo anti-thrombotic evaluation and 3D QSAR analysis (2011) Eur. J. Med Chem, 46, pp. 3237-3249; Hiruyoki, K., Fumitoshi, A., Atsuhiro, S., Tomio, K., Teruhiko, I., Shigeyoshi, N., Yasunori, T., Tetrahydrothienopyridine Derivatives, Furo and Pyrrolo Analogs Thereof and Their Preparation and Uses for Inhibiting Blood Platelet Aggregation 1994, , US Patent 5288726; Srivastava, B.K., Solanki, M., Mishra, B., Soni, R., Jayadev, S., Valani, D., Jain, M., Patel, P.R., Synthesis and antibacterial activity of 4,5,6,7-tetrahydro-thieno 4, [3,2-c] pyridine quinolones (2007) Bioorg. Med. Chem, 17, pp. 1924-1929; Leung, E., Pilkington, L.I., Rensburg, M.V., Jeon, C.Y., Song, M., Arabshahi, H.J., Zoysa, G.H., Reynisson, J., Synthesis and cytotoxicity of thieno [2,3-b] quinoline-2-carboxamide & cycloalkyl [b]thieno [3,2-e] pyridine-2-carboxamide derivatives (2016) Bioorg. Med. Chem, 24, pp. 1142-1154; Liu, L.B., Siegmund, A., Xi, N., Kaplan-Lefko, P., Rex, K., Chen, A., Lin, J., Kim, T.S., Discovery of a Potent, Selective, and Orally Bioavailable c-Met Inhibitor: 1-(2-Hydroxy-2-methylpropyl)-N-(5-(7-methoxyquinoline-4-yloxy)pyridin-2-yl)-5-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carboxamide (AMG 458) (2008) J. Med. Chem, 51, pp. 3688-3691; Peach, M.L., Tan, N., Tan, N., Choyke, S.J., Giubellino, A., Athauda, G., Burke, T.R., Bottaro, D.P., Directed discovery of agents targeting the met tyrosine kinase domain by virtual screening (2009) J. Med. Chem, 52, pp. 943-951; Knudsen, B.S., Gmyrek, G.A., Inra, J., Scherr, D.S., Vaughan, E.D., Nanus, D.M., Kattan, M.W., Woude, G.F., High expression of the Met receptor in prostate cancer metastasis to bone (2002) Urology, 60, pp. 1113-1117; Humphrey, P.A., Zhu, X., Zarnegar, R., Swanson, P.E., Ratliff, T.L., Vollmer, R.T., Day, M.L., Hepatocyte growth factor and its receptor (C-MET) in prostatic carcinoma (1995) Am. J. Pathol, 147, pp. 386-396; Verras, M., Lee, J., Xue, H., Li, T.H., Wang, Y., Sun, Z., The androgen receptor negatively regulates the expression of c-Met: Implications for a novel mechanism of prostate cancer progression (2007) Canc. Res, 67, pp. 967-975; Bacco, F.D., Luraghi, P., Medico, E., Reato, G., Girolami, F., Perera, T., Gabriele, P., Boccaccio, C., Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer (2011) J. Natl. Canc. Inst, 103, pp. 645-661; Zhu, W., Wang, W., Xu, S., Wang, J., Tang, Q., Wu, C., Zhao, Y., Zheng, P., Synthesis, and docking studies of phenylpyrimidinecarboxamide derivatives bearing 1H-pyrrolo [2,3-b] pyridine moiety as c-Met inhibitors (2016) Bioorg. Med. Chem, 24, pp. 1749-1756; Zhang, Z., Lee, J.C., Li, L., Olivas, V., Au, V., Laframboise, T., Abdel-Rahman, M., Bivona, T.G., Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer (2012) Nat. Genet, 44, pp. 852-860; Tiedt, R., Degenkolbe, E., Furet, P., Appleton, B.A., Wagner, S., Schoepfer, J., Buck, E., Hofmann, F.A., Drug resistance screen using a selective MET inhibitor reveals a spectrum of mutations that partially overlap with activating mutations found in cancer patients (2011) Canc. Res, 71, pp. 5255-5264; Takayuki, N., Osamu, T., Atsumi, Y., Tomohiro, M., Keiko, T., Setsuo, F., Shuji, S., Hiroshi, O., E7050: A dual c-Met and VEGFR-2 tyrosine kinase inhibitor promotes tumor regression and prolongs survival in mouse xenograft models (2010) Canc. Sci, 101, pp. 210-215; Peach, M.L., Tan, N., Tan, N., Choyke, S.J., Giubellino, A., Athauda, G., Burke, T.R., Bottaro, D.P., Directed discovery of agents targeting the met tyrosine kinase domain by virtual screening (2009) J. Med. Chem, 52, pp. 943-951; Xu, X., Shi, W., Zhou, Y., Wang, Y., Zhang, M., Song, L., Deng, H., Convenient one-pot synthesis of monofluorinated functionalized 4-H-pyran derivatives via multi-component reactions (2015) J. Fluorine Chem, 176, pp. 127-133; Penta, S., Gadidasu, K.K., Basavoju, S., Rao, V.R., An efficient one-pot synthesis of pyrazolyl-[1,2,4]triazolo [3,4-b] [1,3,4] thiadiazin-6-yl)-2H-pyran-2-one derivatives via multicomponent approach and their potential antimicrobial and nematicidal activities (2013) Tetrahed. Lett, 54, pp. 5663-5666; Vereshchagin, A.N., Elinson, M.N., Ryzhkov, F.V., Nasybullin, R.F., Bobrovsky, S.I., Goloveshkin, A.S., Egorov, M.P., Multicomponent assembling of salicyl aldehydes, malononitrile, and 4-hydroxy-6-methyl-2H-pyran-2-one: A fast and efficient approach to medicinally relevant 2-amino-4H-chromene scaffold (2015) C.R. Chimie, 18, pp. 1344-1349; Hazeri, N., Maghsoodlou, M.T., Mir, F., Kangani, M.M., Saravani, H., Molashahi, E., An efficient one-pot three-component synthesis of tetrahydrobenzo [b]pyran and 3,4-dihydropyrano [c]chromene derivatives using starch solution as catalyst (2014) Chin. J Catal, 35, pp. 391-395; Wagh, Y.B., Tayade, Y.A., Padvi, S.A., Patil, B.S., Patil, N.B., Dalal, D.S., A cesium fluoride promoted efficient and rapid multicomponent synthesis of functionalized 2-amino-3-cyano-4Hpyran and spirooxindole derivatives (2015) Chin. Chem. Lett, 26, pp. 1273-1277; Jolodar, O.G., Shirini, F., Seddighi, M., Introduction of a novel basic ionic liquid containing dual basic functional groups for the efficient synthesis of spiro-4H-pyrans (2016) J. Mol. Liq, 224, pp. 1092-1111; Zakeri, M., Nasef, M.M., Lotf, E.A., Moharami, A., Heravi, M.M., Sustainable alternative protocols for the multicomponent synthesis of spiro-4H-pyrans catalyzed by 4-dimethylaminopyridine (2015) J. Induct. Engin. Chem, 29, pp. 273-281; Tabassum, S., Govindaraju, S., Khan, R.R., Pasha, M.A., Ultrasound mediated, iodine catalyzed green synthesis of novel 2-amino-3-cyano-4H-pyran derivatives (2015) Ultrasonic Sonochem, 24, pp. 1-7; El-Sayed, N.N.E., Abdelaziz, M.A., Wardakhan, W.W., Mohareb, R.M., The Knoevenagel reaction of cyanoacetylhydrazine with pregnenolone: Synthesis of thiophene, thieno [2,3-d] pyrimidine, 1,2,4-triazole, pyran and pyridine derivatives with anti-inflammatory and anti-ulcer activities (2016) Steroids, 107, pp. 98-111; Han, Y., Tang, W.Q., Yan, C.G., Gewald-type reaction of double activated 2,3-diarylcyclopropanes with elemental sulfur for synthesis of polysubstituted 2-aminothiophenes (2014) Tetrahed. Lett, 55, pp. 1441-1443; Puterov�, Z., Andicsov�, A., V�gh, D., Synthesis of ?-conjugated thiophenes starting from substituted 3-oxopropanenitriles via Gewald reaction (2008) Tetrahed, 64, pp. 11262-11269; David, M., Barnes, D.M., Anthony, R., Haight, A.R., Hameury, T., Maureen, A., McLaughlin, M.A., Toma, J.D.R., New conditions for the synthesis of thiophenes via the Knoevenagel/Gewald reaction sequence. Application to the synthesis of a multitargeted kinase inhibitor (2006) Tetrahed, 62, pp. 11311-11319; Helal, M.H., Salem, M.A., Gouda, M.A., Ahmed, N.S., El-Sherif, A.A., Design, synthesis, characterization, quantum-chemical calculations and anti-inflammatory activity of novel series of thiophene derivatives (2015) Mol. Biochem. Spectr, 147, pp. 73-83
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
4_RJPT_8_5_2015.pdf
Size:
161.67 KB
Format:
Adobe Portable Document Format
Description: