The Potential Role of Zinc Oxide Nanoparticles in MicroRNAs Dysregulation in STZ-Induced Type 2 Diabetes in Rats
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Othman M.S. | |
dc.contributor.author | Hafez M.M. | |
dc.contributor.author | Abdel Moneim A.E. | |
dc.contributor.other | B.Sc. Department | |
dc.contributor.other | Preparatory Year College | |
dc.contributor.other | University of Ha�il | |
dc.contributor.other | Hail | |
dc.contributor.other | Saudi Arabia; Faculty of Biotechnology | |
dc.contributor.other | MSA University | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt; Biochemistry Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Ahram Canadian University (ACU) | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt; Zoology and Entomology Department | |
dc.contributor.other | Faculty of Science | |
dc.contributor.other | Helwan University | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:40:44Z | |
dc.date.available | 2020-01-09T20:40:44Z | |
dc.date.issued | 2019 | |
dc.description | Scopus | |
dc.description.abstract | Diabetes mellitus (DM) is a group of metabolic disorders that are characterized by a loss of glucose homeostasis and insufficiency in production or action of insulin. Development of newly antidiabetic molecules using a variety of organic compounds and biomolecules has been in practice for a long time. Recently, nanomaterials are also being used in antidiabetic studies for their unique properties. In this context, zinc nanoparticles have drawn attention due to the relationship between diabetes and imbalance of zinc homeostasis. Few studies have attempted to investigate the effect of zinc oxide nanoparticles (ZON) in microRNA dysregulations in diabetes. To evaluate the therapeutic effect of ZON on streptozotocin (STZ)-induced diabetic rats as well as its role in microRNA dysregulations. Diabetes was induced in rats by 60�mg/kg body weight (bwt) of STZ and then treated with ZON (5�mg/kg bwt) for 15 consecutive days. The levels of glucose, insulin, oxidative stress markers, and microRNAs expression were measured in liver and pancreas tissues. Intraperitoneal injection of 60�mg/kg bwt of STZ to Wistar rats caused significant decreases in the body weight and Zn contents of pancreas, liver, and kidney. Also, STZ injection increased the blood glucose level and oxidative stress (lipid peroxidation (LPO) and nitric oxide (NO). Meanwhile, STZ decreased blood insulin and pancreatic anti-oxidants. STZ also resulted in ? cell dysfunction and destruction and altered the expression of certain pancreatic and liver microRNAs. ZON treatment for 15�days, at a dose of 5�mg/kg bwt resulted in marked improvements in the blood insulin, glucose tolerance, and structure and function of the pancreatic ? cells. Furthermore, ZON administration reduced LPO and NO, and increased the levels of enzymatic and non-enzymatic anti-oxidants in STZ-induced diabetic rats. It was found also that ZON specifically regulated the expression of pancreatic and liver microRNAs that involved in diabetes development. The obtained results revealed that ZON is a promising antidiabetic agent. The antidiabetic effect of ZON was partially mediated by restoring the oxidants/antioxidants balance and by modulating the alerted microRNAs. � 2019, Springer Science+Business Media, LLC, part of Springer Nature. | en_US |
dc.identifier.doi | https://doi.org/10.1007/s12011-019-02012-x | |
dc.identifier.doi | PubMedID | |
dc.identifier.issn | 1634984 | |
dc.identifier.other | https://doi.org/10.1007/s12011-019-02012-x | |
dc.identifier.other | PubMedID | |
dc.identifier.uri | https://t.ly/6x2mz | |
dc.language.iso | English | en_US |
dc.publisher | Humana Press Inc. | en_US |
dc.relation.ispartofseries | Biological Trace Element Research | |
dc.subject | Diabetes mellitus | en_US |
dc.subject | MicroRNA | en_US |
dc.subject | Nanoparticles | en_US |
dc.subject | Oxidative stress | en_US |
dc.subject | Zinc oxide | en_US |
dc.title | The Potential Role of Zinc Oxide Nanoparticles in MicroRNAs Dysregulation in STZ-Induced Type 2 Diabetes in Rats | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Al-Quraishy, S., Dkhil, M.A., Abdel Moneim, A.E., Anti-hyperglycemic activity of selenium nanoparticles in streptozotocin-induced diabetic rats (2015) Int J Nanomedicine, 10, pp. 6741-6756. , COI: 1:CAS:528:DC%2BC28XlvVCktbs%3D, PID: 26604749; Jayawardena, R., Ranasinghe, P., Galappatthy, P., Malkanthi, R., Constantine, G., Katulanda, P., Effects of zinc supplementation on diabetes mellitus: a systematic review and meta-analysis (2012) Diabetol Metab Syndr, 4 (1), p. 13; Mao, Y., Mohan, R., Zhang, S., Tang, X., MicroRNAs as pharmacological targets in diabetes (2013) Pharmacol Res, 75, pp. 37-47; Feng, J., Xing, W., Xie, L., Regulatory Roles of MicroRNAs in Diabetes (2016) International Journal of Molecular Sciences, 17 (10), p. 1729; Ranasinghe, P., Pigera, S., Galappatthy, P., Katulanda, P., Constantine, G.R., Zinc and diabetes mellitus: understanding molecular mechanisms and clinical implications (2015) Daru, 23, p. 44; Umrani, R.D., Paknikar, K.M., Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced type 1 and 2 diabetic rats (2014) Nanomedicine (Lond), 9 (1), pp. 89-104; Nazarizadeh, A., Asri-Rezaie, S., Comparative study of antidiabetic activity and oxidative stress induced by zinc oxide nanoparticles and zinc sulfate in diabetic rats (2016) AAPS PharmSciTech, 17 (4), pp. 834-843; Aboonabi, A., Rahmat, A., Othman, F., Antioxidant effect of pomegranate against streptozotocin-nicotinamide generated oxidative stress induced diabetic rats (2014) Toxicol Rep, 1, pp. 915-922; Thompson, M., Ellison, S.L., Wood, R., Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC technical report) (2002) Pure Appl Chem, 74 (5), pp. 835-855. , COI: 1:CAS:528:DC%2BD38Xlt1ajt7k%3D; Trinder, P., Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor (1969) Ann Clin Biochem, 6 (1), pp. 24-27; Ohkawa, H., Ohishi, N., Yagi, K., Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction (1979) Anal Biochem, 95 (2), pp. 351-358. , COI: 1:CAS:528:DyaE1MXksFaisbk%3D; Green, L.C., Wagner, D.A., Glogowski, J., Skipper, P.L., Wishnok, J.S., Tannenbaum, S.R., Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids (1982) Anal Biochem, 126 (1), pp. 131-138; Ellman, G.L., Tissue sulfhydryl groups (1959) Arch Biochem Biophys, 82 (1), pp. 70-77. , COI: 1:CAS:528:DyaG1MXotl2ksA%3D%3D; Nishikimi, M., Appaji, N., Yagi, K., The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen (1972) Biochem Biophys Res Commun, 46 (2), pp. 849-854. , COI: 1:CAS:528:DyaE38Xps1Wisw%3D%3D; Aebi, H., Catalase in vitro (1984) Methods Enzymol, 105, pp. 121-126. , COI: 1:CAS:528:DyaL2cXltVKis7s%3D; Paglia, D.E., Valentine, W.N., Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase (1967) J Lab Clin Med, 70 (1), pp. 158-169. , COI: 1:CAS:528:DyaF2sXks1Wjur8%3D, PID: 6066618; Factor, V.M., Kiss, A., Woitach, J.T., Wirth, P.J., Thorgeirsson, S.S., Disruption of redox homeostasis in the transforming growth factor-alpha/c-myc transgenic mouse model of accelerated hepatocarcinogenesis (1998) J Biol Chem, 273 (25), pp. 15846-15853. , COI: 1:CAS:528:DyaK1cXktVSls7g%3D; Reitman, S., Frankel, S., A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases (1957) Am J Clin Pathol, 28 (1), pp. 56-63. , COI: 1:CAS:528:DyaG2sXpvFyiuw%3D%3D; Belfield, A., Goldberg, D.M., Normal ranges and diagnostic value of serum 5'nucleotidase and alkaline phosphatase activities in infancy (1971) Arch Dis Child, 46 (250), pp. 842-846. , COI: 1:STN:280:DyaE38%2Fmsleltw%3D%3D; Wybenga, D.R., Di Giorgio, J., Pileggi, V.J., Manual and automated methods for urea nitrogen measurement in whole serum (1971) Clin Chem, 17 (9), pp. 891-895. , COI: 1:CAS:528:DyaE3MXlsVygtbY%3D, PID: 5571487; Chromy, V., Rozkosna, K., Sedlak, P., Determination of serum creatinine by Jaffe method and how to calibrate to eliminate matrix interference problems (2008) Clin Chem Lab Med, 46 (8), pp. 1127-1133; Sharbati-Tehrani, S., Kutz-Lohroff, B., Bergbauer, R., Scholven, J., Einspanier, R., miR-Q: a novel quantitative RT-PCR approach for the expression profiling of small RNA molecules such as miRNAs in a complex sample (2008) BMC Mol Biol, 9, p. 34; Rutter, G.A., Chabosseau, P., Bellomo, E.A., Maret, W., Mitchell, R.K., Hodson, D.J., Solomou, A., Hu, M., Intracellular zinc in insulin secretion and action: a determinant of diabetes risk (2016) Proc Nutr Soc, 75 (1), pp. 61-72; Amiri, A., Dehkordi, R.A.F., Heidarnejad, M.S., Dehkordi, M.J., Effect of the zinc oxide nanoparticles and thiamine for the management of diabetes in alloxan-induced mice: a stereological and biochemical study (2018) Biol Trace Elem Res, 181 (2), pp. 258-264; Asani, S.C., Umrani, R.D., Paknikar, K.M., In vitro studies on the pleotropic antidiabetic effects of zinc oxide nanoparticles (2016) Nanomedicine (Lond), 11 (13), pp. 1671-1687; Changrani, N.R., Chonkar, A., Adeghate, E., Singh, J., Effects of streptozotocin-induced type 1 diabetes mellitus on total protein concentrations and cation contents in the isolated pancreas, parotid, submandibular, and lacrimal glands of rats (2006) Ann N Y Acad Sci, 1084, pp. 503-519. , COI: 1:CAS:528:DC%2BD2sXpsFegtA%3D%3D; Barman, S., Pradeep, S.R., Srinivasan, K., Zinc supplementation mitigates its dyshomeostasis in experimental diabetic rats by regulating the expression of zinc transporters and metallothionein (2017) Metallomics, 9 (12), pp. 1765-1777; Cordova, A., Zinc content in selected tissues in streptozotocin-diabetic rats after maximal exercise (1994) Biol Trace Elem Res, 42 (3), pp. 209-216; Park, J.S., Xun, P., Li, J., Morris, S.J., Jacobs, D.R., Liu, K., He, K., Longitudinal association between toenail zinc levels and the incidence of diabetes among American young adults: the CARDIA trace element study (2016) Sci Rep, 6, p. 23155. , COI: 1:CAS:528:DC%2BC28XktlKitro%3D; Shoae-Hagh, P., Rahimifard, M., Navaei-Nigjeh, M., Baeeri, M., Gholami, M., Mohammadirad, A., Abdollahi, M., Zinc oxide nanoparticles reduce apoptosis and oxidative stress values in isolated rat pancreatic islets (2014) Biol Trace Elem Res, 162 (1-3), pp. 262-269; Schweiger, M., Steffl, M., Amselgruber, W.M., The zinc transporter ZnT8 (slc30A8) is expressed exclusively in beta cells in porcine islets (2013) Histochem Cell Biol, 140 (6), pp. 677-684; Gerber, P.A., Rutter, G.A., The role of oxidative stress and hypoxia in pancreatic Beta-cell dysfunction in diabetes mellitus (2017) Antioxid Redox Signal, 26 (10), pp. 501-518; Ahmed, H.H., Abd El-Maksoud, M.D., Abdel Moneim, A.E., Aglan, H.A., Pre-clinical study for the antidiabetic potential of selenium nanoparticles (2017) Biol Trace Elem Res, 177 (2), pp. 267-280; Saddick, S., Afifi, M., Abu Zinada, O.A., Effect of zinc nanoparticles on oxidative stress-related genes and antioxidant enzymes activity in the brain of Oreochromis niloticus and Tilapia zillii (2017) Saudi J Biol Sci, 24 (7), pp. 1672-1678; Prasad, A.S., Zinc in human health: effect of zinc on immune cells (2008) Mol Med, 14 (5-6), pp. 353-357; Uyoyo Ukperoro, J., Offiah, N., Idris, T., Awogoke, D., Antioxidant effect of zinc, selenium and their combination on the liver and kidney of alloxan-induced diabetes in rats (2010) Mediterr J Nutr Metab, 3 (1), pp. 25-30; Marreiro, D., Cruz, K., Morais, J., Beserra, J., Severo, J., de Oliveira, A., Zinc and Oxidative Stress: Current Mechanisms (2017) Antioxidants, 6 (2), p. 24; Zhu, Y., You, W., Wang, H., Li, Y., Qiao, N., Shi, Y., Zhang, C., Han, X., MicroRNA-24/MODY gene regulatory pathway mediates pancreatic beta-cell dysfunction (2013) Diabetes, 62 (9), pp. 3194-3206; Zhu, H., Leung, S.W., Identification of microRNA biomarkers in type 2 diabetes: a meta-analysis of controlled profiling studies (2015) Diabetologia, 58 (5), pp. 900-911; Klein, D., Misawa, R., Bravo-Egana, V., Vargas, N., Rosero, S., Piroso, J., Ichii, H., Pastori, R.L., MicroRNA expression in alpha and beta cells of human pancreatic islets (2013) PLoS One, 8 (1); Khamisipour, G., Mansourabadi, E., Naeimi, B., Moazzeni, A., Tahmasebi, R., Hasanpour, M., Mohammadi, M.M., Shamsian, S., Knockdown of microRNA-29a regulates the expression of apoptosis-related genes in MCF-7 breast carcinoma cells (2018) Mol Clin Oncol, 8 (2), pp. 362-369; Roggli, E., Britan, A., Gattesco, S., Lin-Marq, N., Abderrahmani, A., Meda, P., Regazzi, R., Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells (2010) Diabetes, 59 (4), pp. 978-986; Lin, X., Guan, H., Huang, Z., Liu, J., Li, H., Wei, G., Cao, X., Li, Y., Downregulation of Bcl-2 expression by miR-34a mediates palmitate-induced Min6 cells apoptosis (2014) J Diabetes Res, 2014, p. 258695; Poy, M.N., Hausser, J., Trajkovski, M., Braun, M., Collins, S., Rorsman, P., Zavolan, M., Stoffel, M., miR-375 maintains normal pancreatic alpha- and beta-cell mass (2009) Proc Natl Acad Sci U S A, 106 (14), pp. 5813-5818; Song, I., Roels, S., Martens, G.A., Bouwens, L., Circulating microRNA-375 as biomarker of pancreatic beta cell death and protection of beta cell mass by cytoprotective compounds (2017) PLoS One, 12 (10); Miao, C., Zhang, G., Xie, Z., Chang, J., MicroRNAs in the pathogenesis of type 2 diabetes: new research progress and future direction (2017) Can J Physiol Pharmacol, 96 (2), pp. 103-112; Trajkovski, M., Hausser, J., Soutschek, J., Bhat, B., Akin, A., Zavolan, M., Heim, M.H., Stoffel, M., MicroRNAs 103 and 107 regulate insulin sensitivity (2011) Nature, 474, pp. 649-653; Willeit, P., Skroblin, P., Moschen, A.R., Yin, X., Kaudewitz, D., Zampetaki, A., Barwari, T., Mayr, M., Circulating MicroRNA-122 is associated with the risk of new-onset metabolic syndrome and type 2 diabetes (2017) Diabetes, 66 (2), pp. 347-357; Lu, B., Christensen, I.T., Ma, L.W., Wang, X.L., Jiang, L.F., Wang, C.X., Feng, L., Yan, Q.C., miR-24-p53 pathway evoked by oxidative stress promotes lens epithelial cell apoptosis in age-related cataracts (2018) Mol Med Rep, 17 (4), pp. 5021-5028; Ohtsubo, K., Chen, M.Z., Olefsky, J.M., Marth, J.D., Pathway to diabetes through attenuation of pancreatic beta cell glycosylation and glucose transport (2011) Nat Med, 17 (9), pp. 1067-1075; Liu, C.M., Liang, D., Jin, J., Li, D.J., Zhang, Y.C., Gao, Z.Y., He, Y.T., Research progress on the relationship between zinc deficiency, related microRNAs, and esophageal carcinoma (2017) Thorac Cancer, 8 (6), pp. 549-557; Zhao, Y., Li, L., Min, L.J., Zhu, L.Q., Sun, Q.Y., Zhang, H.F., Liu, X.Q., Hao, Z.H., Regulation of MicroRNAs, and the correlations of MicroRNAs and their targeted genes by zinc oxide nanoparticles in ovarian granulosa cells (2016) PLoS One, 11 (5); Ryu, M.-S., Langkamp-Henken, B., Chang, S.-M., Shankar, M.N., Cousins, R.J., Genomic analysis, cytokine expression, and microRNA profiling reveal biomarkers of human dietary zinc depletion and homeostasis (2011) Proc Natl Acad Sci, 108 (52), pp. 20970-20975 | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_128.png
- Size:
- 2.73 KB
- Format:
- Portable Network Graphics
- Description: