INFLUENZA A SUBTYPING AND HOST ORIGIN CLASSIFICATION USING PROFILE HIDDEN MARKOV MODELS

Loading...
Thumbnail Image

Date

2012

Journal Title

Journal ISSN

Volume Title

Type

Article

Publisher

WORLD SCIENTIFIC PUBL CO PTE LTD

Series Info

JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY;Volume: 12 Issue: 2

Scientific Journal Rankings

Abstract

Influenza is one of the most important emerging and reemerging infectious diseases, causing high morbidity and mortality in communities (epidemic) and worldwide (pandemic). Here, classification of human vs. non-human influenza, and subtyping of human influenza viral strains virus is done based on profile hidden Markov models (HMM). The classical ways of determining influenza viral subtypes depend mainly on antigenic assays, which is time-consuming and not fully accurate. The introduced technique is much cheaper and faster, yet usually can still yield high accuracy. Multiple sequence alignments were done for the 16 HA subtypes and 9 NA subtypes, followed by profile-HMMs models generation, calibration and evaluation using the HMMER suite for each group. Subtyping accuracy of all HA and NA models achieved 100%, while host classification achieved accuracies around 53% and 95.1% according to HA subtype.

Description

Accession Number: WOS:000302733800009

Keywords

University of Bioinformatics, Influenza virus, Profile hidden Markov model, MULTIPLE SEQUENCE ALIGNMENT, VIRUS, HEMAGGLUTININ, FAMILIES, HUMANS

Citation