Lipid nanocarriers for tamoxifen citrate/coenzyme Q10 dual delivery

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorEl-Leithy E.S.
dc.contributor.authorAbdel-Rashid R.S.
dc.contributor.otherDepartment of Pharmaceutics and Industrial Pharmacy
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Sciences and Arts (MSA)
dc.contributor.otherCairo
dc.contributor.otherEgypt; Department of Pharmaceutics and Industrial Pharmacy
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherHelwan University
dc.contributor.otherAin Helwan
dc.contributor.otherCairo
dc.contributor.other11795
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:41:16Z
dc.date.available2020-01-09T20:41:16Z
dc.date.issued2017
dc.descriptionScopus
dc.descriptionMSA Google Scholar
dc.description.abstractNanotechnology based combinatorial therapy has emerged as an effective strategy for cancer treatment due to its synergistic activity, suppression of multi-drug resistance and successful delivery to target site. The objective of this work was to develop and characterize tamoxifen citrate (TC) and coenzyme Q10 (CoQ10) lipid nanocarriers for oral breast cancer chemotherapy. Stearic acid (2%w/v) and poloxamer188 (3%w/v) were selected as optimal lipid matrix and surfactant for development of solid lipid nanocarriers (SLNs). Incorporation of lecithin into lipid matrix (SLN9) significantly reduced particle size to 180 nm and increased %EE of CoQ10 (45%). Nanostructured lipid carriers containing 10% Labrafac oil showed further decrease in particle size reaching only 81 nm and increased %EE up to 94% and 56% for TC and CoQ10, respectively. Lipid nanocapsules showed more prominent effect on decreasing particle size (36 nm). Lipid nanocarriers offered controlled drug release profiles. The study showed that lipid carriers significantly improved drugs permeation through rabbit intestinal mucosa and suggested them as potential delivery systems for improving the bioavailability of TC/CoQ10 therapeutic molecules. Subsequent studies will be performed in order to elucidate the cytotoxicity and genotoxicity of selected lipid nanocarriers formulas on MCF-7 (adenocarcinoma breast cancer cells) versus normal cells (WISH cell line). � 2017 Elsevier B.V.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=22204&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1016/j.jddst.2017.07.020
dc.identifier.doiPubMed ID :
dc.identifier.issn17732247
dc.identifier.otherhttps://doi.org/10.1016/j.jddst.2017.07.020
dc.identifier.otherPubMed ID :
dc.identifier.urihttps://t.ly/YZXpY
dc.language.isoEnglishen_US
dc.publisherEditions de Santeen_US
dc.relation.ispartofseriesJournal of Drug Delivery Science and Technology
dc.relation.ispartofseries41
dc.subjectCoenzyme Q10en_US
dc.subjectLipid nanocapsulesen_US
dc.subjectNanostructured lipid carriersen_US
dc.subjectSolid lipid nanoparticlesen_US
dc.subjectTamoxifen citrateen_US
dc.subjectnanocarrieren_US
dc.subjectpalmitic aciden_US
dc.subjectphosphatidylcholineen_US
dc.subjectpoloxameren_US
dc.subjectstearic aciden_US
dc.subjecttamoxifen citrateen_US
dc.subjectubidecarenoneen_US
dc.subjectanimal experimenten_US
dc.subjectanimal tissueen_US
dc.subjectArticleen_US
dc.subjectconcentration (parameters)en_US
dc.subjectcontrolled drug releaseen_US
dc.subjectcontrolled studyen_US
dc.subjectdrug delivery systemen_US
dc.subjectdrug penetrationen_US
dc.subjectdrug solubilityen_US
dc.subjectex vivo studyen_US
dc.subjectfreeze dryingen_US
dc.subjectintestine mucosaen_US
dc.subjectkineticsen_US
dc.subjectmaleen_US
dc.subjectnonhumanen_US
dc.subjectOryctolagus cuniculusen_US
dc.subjectparticle sizeen_US
dc.subjectphysical chemistryen_US
dc.subjectthermographyen_US
dc.titleLipid nanocarriers for tamoxifen citrate/coenzyme Q10 dual deliveryen_US
dc.typeArticleen_US
dcterms.isReferencedBySanna, V., Pala, N., Sechi, M., Targeted therapy using nanotechnology: focus on cancer (2014) Int. J. Nanomed, 9, pp. 467-483; Mayer, L.D., Janoff, A.S., Optimizing combination chemotherapy by controlling drug ratios (2007) Mol. Interv., 7 (4), pp. 216-223; Day, D., Siu, L., Approaches to modernize the combination drug development paradigm (2016) Genome Med., 8, p. 115; Fuchs-Tarlovsky, V., Role of antioxidants in cancer therapy (2013) Nutrition, 29, pp. 15-21; Charman, W., Porter, C., Mithani, S., Dressman, J., Physicochemical and physiological mechanisms for the effects of food on drug absorption: the role of lipids and pH (1997) J.�Pharm. Sci., 86 (3), pp. 269-282; M�ller, R., Mader, K., Gohla, S., Solid lipid nanoparticles (SLN) for controlled drug delivery � a review of the state of the art (2000) Eur. J. Pharm. Biopharm., 50 (1), pp. 161-177; Mehnert, W., M�der, K., Solid lipid nanoparticles. Production, characterization and applications (2001) Adv. Drug Del Rev., 47, pp. 165-196; Trevaskis, N., Charman, W., Porter, C., Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update (2008) Adv. Drug Deliv. Rev., 60, pp. 702-716; Parhi, P., Mohanty, C., Sahoo, S.K., Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy (2012) Drug Discov. today, 17 (17-18), pp. 1044-1052; Zhang, X.Q., Xu, X., Bertrand, N., Pridgen, E., Swami, A., Farokhzad, O.C., Interactions of nanomaterials and biological systems: implications to personalized nanomedicine (2012) Adv. Drug Deliv. Rev., 64 (13), pp. 1363-1384; Gindy, M.E., Prud'homme, R.K., Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy (2009) Expert Opin. Drug Deliv., 6 (8), pp. 865-878; Shete, H., Patravale, V., Long chain lipid based tamoxifen NLC. Part I: preformulation studies, formulation development and physicochemical characterization (2013) Int. J. Pharm., 454, pp. 573-583; Nair, R., Kumar, K., Vishnupriya, K., Badivaddin, T., Sevukarajan, M., Preparation and characterization of rizatriptan loaded solid lipid nanoparticles (SLNs) (2011) J.�Biomed. Sci. Res., 3 (2), pp. 392-396; Das, S., Chaudhury, A., Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery (2010) AAPS PharmSciTech, 12 (1), pp. 62-76; Varshosaz, J., Eskandari, S., Tabbakhian, M., Freeze-drying of nanostructure lipid carriers by different carbohydrate polymers used as cryoprotectants (2012) CarbohydPolym, 88, pp. 1157-1163; Gaucher, G., Marchessault, R., Leroux, J., Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes (2010) J.�Control Rel, 143, pp. 2-12; Abdel-Mottaleb, M., Neumann, D., Lamprecht, A., Lipid nanocapsules for dermal application: a comparative study of lipid-based versus polymer-based nanocarriers (2011) Int. J. Pharm., 79, pp. 36-42; Beduneau, A., Saulnier, P., Benoit, J., Active targeting of brain tumors using nanocarriers (2007) Biomat, 28, pp. 4947-4967; Thomas, O., Lagarce, F., Lipid nanocapsules: a nanocarrier suitable for scale-up process (2013) J.�Drug Del Sci. Tech., 23 (6), pp. 555-559; Mail�nder, V., Landfester, K., Interaction of nanoparticles with cells (2009) Biomacromol, 10, pp. 2379-2400; Huynh, N., Passirani, C., Saulnier, P., Benoit, J., Lipid nanocapsules: a new platform for nanomedicine (2009) Int. J. Pharm., 379, pp. 201-209; Gao, S., Singh, J., In�vitro percutaneous absorption enhancement of a lipophilic drugs tamoxifen by terpenes (1998) J.�Control Rel, 51 (2-3), pp. 193-199; Brigger, I., Chaminade, P., Marsaud, V., Appel, M., Besnard, M., Gurny, R., Renoir, M., Couvreur, P., Tamoxifen encapsulated within polyethylene glycol-coated nanospheres. A new antiestrogen formulation (2001) Int. J. Pharms, 214, pp. 37-42; Cohen, I., Endometrial pathologies associated with postmenopausal tamoxifen treatment (2004) Gynecol&Oncol, 94, pp. 256-266; Delima, G.R., Facina, G., Shida, J.Y., Chein, M.B., Tanaka, P., Dardes, R.S., Jordan, V.C., Gebrim, L.H., Effects of low dose tamoxifen on normal breast tissue from premenopausal women (2003) Eur. J. Cancer, 39, pp. 891-898; Perumal, S.S., Shanthi, P., Sachdanandam, P., Augmented efficacy of tamoxifen in rat breast tumorigenesis when gavaged along with riboflavin, niacin, and CoQ10: effects on lipid peroxidation and antioxidants in mitochondria (2005) Chem-Biol Interact., 152, pp. 49-58; Fato, R., Formiggini, G., Genova, M.L., The role of coenzyme Q10 in mitochondrial electron transport (2007) Mitochondrion, 7, pp. S8-S33; Yuvaraj, S., Premkumar, V.G., Vijayasarathy, K., Ameliorating effect of coenzyme Q10, riboflavin and niacin in tamoxifen-treated postmenopausal breast cancer patients with special reference to lipids and lipoproteins (2007) ClinBiochem, 40 (9-10), pp. 623-628; El-Leithy, E.S., Abdel-Rashid, R.S., Validation and application of vierordt's spectrophotometric method for simultaneous estimation of tamoxifen/coenzyme q10 in their binary mixture and pharmaceutical dosage forms (2016) Asian J. Pharm. Sci.; Taupitz, T., Klein, S., Can biorelevant media be simplified by using SLS and tween 80 to replace bile compounds? (2010) Open Drug Del J., 4, pp. 30-37; Bergstrom, C.A., Holm, R., Jorgensen, S.A., Andersson, S.B., Artursson, P., Beato, S., Borde, A., Dressman, J., Early pharmaceutical profiling to predict oral drug absorption: current status and unmet needs (2013) Eur. J. Pharm. Sci., 57 (16), pp. 173-199; Chen, C., Tsai, T., Huang, Z., Fang, J., Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: physicochemical characterization and pharmacokinetics (2010) Eur. J. Pharm. Biopharm., 74, pp. 474-482; Fang, J., Fang, C., Liu, C., Su, Y., Lipid nanoparticles as vehicles for topical psoralen delivery: solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC) (2008) Eur. J. Pharm. Biopharm., 70 (2), pp. 633-640; Sandri, G., Bonferoni, M., Gokce, E., Ferrari, F., Rossi, S., Patrini, M., Caramella, C., Chitosan-associated, S.L.N., In�vitro and ex�vivo characterization of cyclosporine A loaded ophthalmic systems (2010) J.�Microencapsul., 27. , 735�476; Sadiq, A., Abdul Rassol, A., Formulation and evaluation of silibinin loaded solid lipid nanoparticles for peroral use targeting lower part of gastrointestinal tract (2014) Int. J. Pharm. Pharm. Sci., 6, p. 1; Korkm, E., Gokce, E., Ozer, O., Development and evaluation of coenzyme Q10 loaded solid lipid nanoparticle hydrogel for enhanced dermal delivery (2013) Acta Pharm., 63 (4), pp. 517-529; Upadhyay, S., Patel, V., Patel, J., Upahdyay, U., Saluja, A., Fabrication of solid lipid nanoparticles containing tamoxifen citrate and impact of process parameters on formulation (2012) Int. J. Biol& Pharm. Res., 3 (3), pp. 422-430; Tran, T., Ramasamy, T., Truong, D., Choi, H., Yong, C., Kim, J., Preparation and characterization of fenofibrate-loaded nanostructured lipid carriers for oral bioavailability enhancement (2014) AAPS pharmscitech, 15, pp. 1509-1515; Sutaria, D., Grandhi, B., Thakkar, A., Wang, J., Prabhu, S., Chemoprevention of pancreatic cancer using solid-lipid nanoparticulate delivery of a novel aspirin, curcumin and sulforaphane drug combination regimen (2012) Int. J. Oncol., 41, pp. 2260-2268; Gardouh, A., Gad, S., Ghonaim, H., Ghorab, M., Design and characterization of glyceryl monostearate solid lipid nanoparticles prepared by high shear homogenization (2013) Br. J Pharm Res., 3 (3), pp. 326-346; Stulzer, H., Rodrigues, P., Cardoso, T., Matos, J., Silvam, M., Compatibility studies between captopril and pharmaceutical excipients used in tablets formulations (2008) J.�Therm. Anal. Calor, 91 (1), pp. 323-328; Kumari, K., Kundu, P., Studies on in�vitro release of CPM from semi-interpenetrating polymer network (IPN) composed of chitosan and glutamic acid (2008) Bull. Mater Sci., 31 (2), pp. 159-167; Mukherjee, S., Ray, S., Thakur, R., Design and evaluation of Itraconazole loaded solid lipid nanoparticulate system for improving the antifungal therapy (2009) Pak J. Pharm. Sci., 22 (2), pp. 131-138; Zhang, L., Pornpattananangkul, D., Hu, C.M., Huang, C.M., Development of nanoparticles for antimicrobial drug delivery (2010) Curr. Med. Chem., 17, pp. 585-590; Xia, Q., Kong, R., Freeze-drying and characterization of vitamin a palmitate-loaded nanostructured lipid carriers (NLC) (2011) Mater Sci. Forum, 694, pp. 365-369; Bilensoy, E., Vural, I., Bochot, A., Renoir, J., Ducheneb, D., Hincal, A., Tamoxifen citrate loaded amphiphilic ?-cyclodextrin nanoparticles: in�vitro characterization and cytotoxicity (2005) J.�Control Rel., 104, pp. 489-496; Priyanka, K., Sathali, A.A., Preparation and evaluation of montelukast sodium loaded solid lipid nanoparticles (2012) J.�Young Pharm., 4 (3), pp. 129-137; Mohanty, B., Majumdar, D., Mishra, S., Panda, A., Patnaik, S., Development and characterization of itraconazole-loaded solid lipid nanoparticles for ocular delivery (2015) Pharm. Dev. Technol., 20 (4), pp. 458-464; Schafer-Korting, M., Mehnert, W., Korting, H.C., LiNpid nanoparticles for improved topical application of drugs for skin diseases (2007) Adv. Drug Deliv. Rev., 59 (6), pp. 427-443; Hao, J., Fang, X., Zhou, Y., Wang, J., Guo, F., Li, F., Peng, X., Development and optimization of SLNs formulation for ophthalmic delivery of Chloramphenicol using a Box-Behnken design (2011) Int. J. Nanomed, 6, pp. 683-692; Lopes, R., Eleut�rio, C., Gon�alves, L., Cruz, M., Almeida, A., Lipid nanoparticles containing oryzalin for the treatment of leishmaniasis (2012) Eur. J. Pharm. Sci., 45, pp. 442-450; Ghorab, M., Abdel-Salam, H., Abdel-Moaty, M., Solid lipid nanoparticles effect of lipid matrix and surfactant on their physical characteristics (2004) Bull. Pharm. Sci., 27 (1), pp. 155-159. , Assiut University; Emami, J., Rezazadeh, M., Varshosaz, J., Tabbakhian, M., Aslani, A., Formulation of LDL targeted nanostructured lipid carriers loaded with paclitaxel: a detailed study of preparation, freeze drying condition, and in�vitro cytotoxicity (2012) J.�Nanomater, 10; Hu, F.Q., Jiang, S.P., Du, Y.Z., Yuan, H., Ye, Y.Z., Zeng, S., Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system (2005) Coll. Surf. B Biointer, 45 (3-4), pp. 67-173; Heimenz, P., Principles of Colloid and Surface Chemistry (1986), Marcel Dekker New York, NY; Hu, K., Cao, S., Hu, F., Feng, J., Enhanced oral bioavailability of docetaxel by lecithin nanoparticles: preparation, in�vitro, and in�vivo evaluation (2012) Int. J. Nanomed, 7, pp. 3537-3545; Schubert, M., Mueller-Goymann, C., Characterisation of surface modified lipid nanoparticles: influence of lecithin and non-ionic emulsifier (2005) Eur. J. Pharm. Biopharm., 61 (1-2), pp. 77-86; Li, Z., Yu, L., Zheng, L., Geng, F., Studies on crystallinity state of puerarin loaded solid lipid nanoparticles prepared by double emulsion method (2010) J.�Therm. Anal. Calorim., 99, pp. 689-693; Reddy, L., Vivek, K., Bakshi, N., Murthy, R., Tamoxifen citrate loaded solid lipid nanoparticles (SLN): preparation, characterization, in�vitro drug release, and pharmacokinetic evaluation (2006) Pharm. Dev. Technol., 11, pp. 167-177; Schwarz, C., Mehnert, W., Lucks, J., M�ller, R., Solid lipid nanoparticles (SLN) for controlled drug delivery: production, characterization and sterilization (1994) J.�Contr Rel, 30, pp. 83-96; Teeranachaideekul, V., Souto, E., Junyaprasert, V., M�ller, R., Cetylpalmitate-based NLC for topical delivery of coenzyme COQ10 � development, physicochemical characterization and in�vitro release studies (2007) Eur. J. Pharm. Biopharm., 67 (1), pp. 141-148; Zhang, Z., Gao, F., Jiang, S., Chen, L., Liu, Z., Yu, H., Li, Y., Bile salts enhance the intestinal absorption of lipophilic drug loaded lipid nanocarriers: mechanism and effect in rats (2013) Int. J. Pharm., 452 (1-2), pp. 374-381. , 16; Shete, H., Chatterjeeb, S., Deb, A., Patravale, V., Long chain lipid based tamoxifen NLC. Part II: pharmacokinetic, biodistribution and in�vitro anticancer efficacy studies (2013) Int. J. Pharm., 454. , 584� 59
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: