Synthesis and cytotoxic activity of certain benzothiazole derivatives against human MCF-7 cancer cell line

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorMohamed L.W.
dc.contributor.authorTaher A.T.
dc.contributor.authorRady G.S.
dc.contributor.authorAli M.M.
dc.contributor.authorMahmoud A.E.
dc.contributor.otherPharmaceutical Organic Chemistry Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherCairo University
dc.contributor.otherCairo
dc.contributor.otherEgypt; Pharmaceutical Organic Chemistry Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Sciences and Arts (MSA) University
dc.contributor.otherCairo
dc.contributor.otherEgypt; Directorate of Health Affairs
dc.contributor.otherMinistry of Health
dc.contributor.otherGiza
dc.contributor.otherEgypt; Biochemistry Department
dc.contributor.otherDivision of Genetic Engineering and Biotechnology
dc.contributor.otherNational Research Centre
dc.contributor.otherGiza
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:41:21Z
dc.date.available2020-01-09T20:41:21Z
dc.date.issued2017
dc.descriptionScopus
dc.description.abstractA new series of benzothiazole has been synthesized as cytotoxic agents. The new derivatives were tested for their cytotoxic activity toward the human breast cancer MCF-7 cell line against cisplatin as the reference drug. Many derivatives revealed good cytotoxic effect, whereas four of them, 4, 5c, 5d, and 6b, were more potent than cisplatin, with IC50 values being 8.64, 7.39, 7.56, and 5.15�?m compared to 13.33�?m of cisplatin. The four derivatives� cytotoxic activity was accompanied by regulating free radicals production, by increasing the activity of superoxide dismutase and depletion of intracellular reduced glutathione, catalase, and glutathione peroxidase activities, accordingly, the high production of hydrogen peroxide, nitric oxide, and other free radicals causing tumor cell death as monitored by reduction in the synthesis of protein and nucleic acids. Most of the tested compounds showed potent to moderate growth inhibitory activity; in particular, compound 6b exhibited the highest activity suggesting it is a lead compound in cytotoxic activity. � 2016 John Wiley & Sons A/S.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=4000150314&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1111/cbdd.12879
dc.identifier.doiPubMed ID 27700014
dc.identifier.issn17470277
dc.identifier.otherhttps://doi.org/10.1111/cbdd.12879
dc.identifier.otherPubMed ID 27700014
dc.identifier.urihttps://t.ly/xRmJm
dc.language.isoEnglishen_US
dc.publisherBlackwell Publishing Ltden_US
dc.relation.ispartofseriesChemical Biology and Drug Design
dc.relation.ispartofseries89
dc.subjectOctober University for Modern Sciences and Arts
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectUniversity of Modern Sciences and Arts
dc.subjectMSA University
dc.subjectanticanceren_US
dc.subjectantioxidanten_US
dc.subjectbenzothiazoleen_US
dc.subjectcytotoxicen_US
dc.subjectMCF-7en_US
dc.subject2 (1,3 benzothiazol 2 yl) 2 [3 phenyl 3,3a dihydro thiazolo[4,5-b](1,4)benzothiazin 2 ylidene]acetonitrileen_US
dc.subject2 (1,3 benzothiazol 2 yl) 2 [3 phenyl(1,3)thiazolidin 2 ylidene]acetonitrileen_US
dc.subject2 (1,3 benzothiazol 2 yl) 2 [3 phenylthiazolo[4,5-b]quinoxalin 2(3h) ylidene]acetonitrileen_US
dc.subject2 (1,3 benzothiazol 2 yl) 2 [4 (2 hydroxybenzylidene) 5 oxo 3 phenyl thiazolidin 2 ylidene]acetonitrileen_US
dc.subject2 (1,3 benzothiazol 2 yl) 2 [4 (3 hydroxybenzylidene) 5 oxo 3 phenyl thiazolidin 2 ylidene]acetonitrileen_US
dc.subject2 (1,3 benzothiazol 2 yl) 2 [4 (4 chlorobenzylidene) 5 oxo 3 phenyl thiazolidin 2 ylidene]acetonitrileen_US
dc.subject2 (1,3 benzothiazol 2 yl) 2 [4 (4 hyrdoxybenzylidene) 5 oxo 3 phenyl thiazolidin 2 ylidene]acetonitrileen_US
dc.subject2 (1,3 benzothiazol 2 yl) 2 [4 methyl 5 oxo 3 phenyl(1,3)thiazolidin 2 ylidene]acetonitrileen_US
dc.subject2 (1,3 benzothiazol 2 yl) 2 [4,5 dioxo 3 phenyl(1,3)thiazolidin 2 ylidene]acetonitrileen_US
dc.subject2 (1,3 benzothiazol 2 yl) 2 [5 oxo 3 phenyl(1,3)thiazolidin 2 ylidene]acetonitrileen_US
dc.subject2 (1,3 benzothiazol 2 yl) 2 [[4 (furan 2 yl)methyl] 5 oxo 3 phenyl thiazolidin 2 yli dene]acetonitrileen_US
dc.subject4 [2 (1,2 dihydro 1,5 dimethyl 2 phenylpyrazol 3 one 4 yl)diazen 1 yl] 5 ox 3 phenylthiazolidin 2 ylidene 2 1,3 benzothiazol 2 yl acenotrileen_US
dc.subject4 [2 (3 hydroxyphenyl)diazen 1 yl]5 oxo 3 phenylthiaazolidin 2 ylidene 2 1,3 benzothiazol 2 yl acenotrileen_US
dc.subject4 [2 (3 methylphenyl)diazen 1 yl]5 oxo 3 phenylthiazolidin 2 ylidene 2 1,3 benzothiazol 2 yl acenotrileen_US
dc.subject4 [2 (4 chlorophenyl)diazen 1 yl]5 oxo 3 phenylthiaazolidin 2 ylidene 2 1,3 benzothiazol 2 yl acenotrileen_US
dc.subject4 [2 (4 hydroxyphenyl)diazen 1 yl]5 oxo 3 phenylthiaazolidin 2 ylidene 2 1,3 benzothiazol 2 yl acenotrileen_US
dc.subject4 [2 [1 phenyl 1h pyrazol 5(4h) one 3 yl]diazen 1 yl] 5 oxo 3 phenylthiazo lidin 2 ylidene 2 1,3 benzothiazol 2 yl acenotrileen_US
dc.subject4 [2 [1h pyrazol 5(4h) one 3 yl]diazen 1 yl] 5 oxo 3 phenylthiazo lidin 2 ylidene 2 1,3 benzothiazol 2 yl acenotrileen_US
dc.subjectbenzothiazole derivativeen_US
dc.subjectcatalaseen_US
dc.subjectcisplatinen_US
dc.subjectcytotoxic agenten_US
dc.subjectglutathioneen_US
dc.subjectglutathione peroxidaseen_US
dc.subjecthydrogen peroxideen_US
dc.subjectnitric oxideen_US
dc.subjectsuperoxide dismutaseen_US
dc.subjectunclassified drugen_US
dc.subjectantioxidanten_US
dc.subjectbenzothiazole derivativeen_US
dc.subjectantineoplastic activityen_US
dc.subjectantioxidant activityen_US
dc.subjectArticleen_US
dc.subjectcontrolled studyen_US
dc.subjectdrug effecten_US
dc.subjectdrug synthesisen_US
dc.subjectenzyme activityen_US
dc.subjectIC50en_US
dc.subjectMCF-7 cell lineen_US
dc.subjectpriority journalen_US
dc.subjectcarbon nuclear magnetic resonanceen_US
dc.subjectdrug screeningen_US
dc.subjecthumanen_US
dc.subjectmass spectrometryen_US
dc.subjectproton nuclear magnetic resonanceen_US
dc.subjectAntioxidantsen_US
dc.subjectBenzothiazolesen_US
dc.subjectCarbon-13 Magnetic Resonance Spectroscopyen_US
dc.subjectDrug Screening Assays, Antitumoren_US
dc.subjectHumansen_US
dc.subjectInhibitory Concentration 50en_US
dc.subjectMass Spectrometryen_US
dc.subjectMCF-7 Cellsen_US
dc.subjectProton Magnetic Resonance Spectroscopyen_US
dc.titleSynthesis and cytotoxic activity of certain benzothiazole derivatives against human MCF-7 cancer cell lineen_US
dc.typeArticleen_US
dcterms.isReferencedByTaher, A.T., Georgey, H.H., El-Subbagh, H.I., (2012) Eur. J. Med. Chem., 47, p. 445; Bashandy, M.S., ElSaid, M.S., Arafa, R.K., Ghorab, M.M., (2014) J. Enzyme Inhib. Med. Chem., 29, p. 619; Taher, A.T., Mohammed, L.W., (2013) Arch. Pharm. Res., 36, p. 684; Ghorab, M.M., Alsaid, M.S., Higgins, M., Dinkova-Kostova, A.T., Shahat, A.A., Elghazawy, N.H., Arafa, R.K., (2016) J. Enzyme Inhib. Med. Chem., 31, p. 7; Taher, A.T., Hegazy, G.H., (2013) Arch. Pharm. Res., 36, p. 573; http://www.cancer.gov/about-cancer/treatment/drugs/breast; Geronikaki, A., Babaev, E., Dearden, J., Dehaen, W., Filimonov, D., Galaeva, I., Krajneva, V., Voronina, T., (2004) Bioorg. Med. Chem., 12, p. 6559; Vacondio, F., Mor, M., Silva, C., Zuliani, V., Rivara, M., Rivara, S., Bordi, F., Testa, B., (2004) Eur. J. Pharm. Sci., 23, p. 89; Cheng, G., Wang, L.-L., Qu, W.-S., Long, L., Cui, H., Liu, H.-Y., Cao, Y.-L., Li, S., (2005) Acta Pharmacol. Sin., 26, p. 1460; Moreno-D�az, H., Villalobos-Molina, R., Ortiz-Andrade, R., D�az-Couti�o, D., Medina-Franco, J.L., Webster, S.P., Binnie, M., Navarrete-V�zquez, G., (2008) Bioorg. Med. Chem. Lett., 18, p. 2871; Amnerkar, N.D., Bhusari, K.P., (2010) Eur. J. Med. Chem., 45, p. 149; Karal?, N., G�zel, �., �zsoy, N., �zbey, S., Salman, A., (2010) Eur. J. Med. Chem., 45, p. 1068; Choi, S.-J., Park, H.J., Lee, S.K., Kim, S.W., Han, G., Choo, H.-Y.P., (2006) Bioorg. Med. Chem., 14, p. 1229; Lavergne, O., Fernandes, A.-C., Br�hu, L., Sidhu, A., Br�zak, M.-C., Pr�vost, G., Ducommun, B., Contour-Galcera, M.-O., (2006) Bioorg. Med. Chem. Lett., 16, p. 171; Tasler, S., M�ller, O., Wieber, T., Herz, T., Pegoraro, S., Saeb, W., Lang, M., Sch�chtele, C., (2009) Bioorg. Med. Chem., 17, p. 6728; Bhuva, H.A., Kini, S.G., (2010) J. Mol. Graph. Model., 29, p. 32; Mohamed, M.F., Mohamed, M.S., Shouman, S.A., Fathi, M.M., Abdelhamid, I.A., (2012) Appl. Biochem. Biotechnol., 168, p. 1153; Ibrahim, N.M., Yosef, H.A.A., Ewies, E.F., Mahran, M.R.H., Ali, M.M., Mahmoud, A.E., (2015) J. Braz. Chem. Soc., 26, p. 1086; Prabhu, P.P., Panneerselvam, T., Shastry, C.S., Sivakumar, A., Pande, S.S., (2015) J. Saudi Chem. Soc., 19, p. 181; Elzahabi, H.S.A., (2011) Eur. J. Med. Chem., 46, p. 4025; Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J.T., Boyd, M.R., (1990) J. Natl Cancer Inst., 82, p. 1107; Paglia, D.E., Valentine, W.N., (1967) J. Lab. Clin. Med., 70, p. 158; Aebi, H., (1984) Method of Enzymatic Analysis, pp. 673-679. , Academic Press, New York; Marklund, S., Marklund, G., (1974) Eur. J. Biochem., 47, p. 469; Wolff, S.P., (1994) Methods Enzymol., 233, p. 182; Montgomery, H.A.C., Dymock, J.F., (1961) Analyst, 86, p. 414; Ellman, G.L., (1959) Arch. Biochem. Biophys., 82, p. 70; Zhou, T., Zhou, G., Song, W., Eguchi, N., Lu, W., Lundin, E., Jin, T., Nordberg, G., (1999) Toxicology, 142, p. 1; Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., (1951) J. Biol. Chem., 103, p. 265; Refaat, H.M., (2010) Eur. J. Med. Chem., 45, p. 2949; Akar, D., ?ncesu, Z., G�ndo?du-Karaburun, N., Benkli, K., Ifl?kda?, ?., (2004) Turk. J. Pharm. Sci., 1, p. 193; Sindhu, T.J., Chandran, M., Paul, D., Bhat, A.R., Krishnakumar, K., (2014) Int. J. Pharm. Res. Sch., 3, p. 24; Ismail, M.M., Mohamed, E.A., Abass, M., (1997) Chem. Pap., 51, p. 43; Shabaan, M., Taher, A.T., Osman, E.O., (2011) Eur. J. Chem., 2, p. 365
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: