INTERACTIONS OF N-TERMINUS OF HUMAN RECOMBINANT FIBRILLIN-3 WITH FIBULIN-2 AND HEPARIN.

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorI. El-Hallous, Ehab
dc.contributor.authorE. Ibrahim, Nasser
dc.contributor.authorE. Ismail, Samer
dc.contributor.authorM. Montaser, Metwally
dc.date.accessioned2020-03-05T09:56:02Z
dc.date.available2020-03-05T09:56:02Z
dc.date.issued2016
dc.descriptionMSA Google Scholaren_US
dc.description.abstractFibrillins are large family of proteins that form a major constituent of microfibrils and subsequently the extracellular matrix. Fibrillin-1 is the most characterized fibrillin member and has been verified to be linked to Marfan syndrome. Fibrillin-2 was linked to congenital contractural arachnodactyly. Fibrillin-3 is expressed during tissues development and it has been linked to Weill Marchesani syndrome and polycystic ovary syndrome. Self-assembly and multiple ligand binding properties of fibrillins are crucial for the proper formation and function of microfibrils. These properties are often compromised in pathological situations. Therefore, we aimed to study the interaction epitopes of the N-terminal of fibrillin-3 with fibulin-2 and heparin in comparison to fibrillin-1, as well as the molecular shapes of the Nterminal region of fibrillin-3. In the present study we compared the binding of fibulin-2 and heparin to the N-terminal polypeptides of both fibrilin-1 and fibrillin-3. Also, we compared folding shapes of their N-termini. Our results indicated the similarity of N-termini of both fibrillin-1 and fibrillin-3 in binding to fibulin-2 and heparin as well as their structures. The N-terminal polypeptides of Fibrillin-3 can interact with Fibulin-2 and heparin in a similar fashion as compared to fibrillin-1, indicating similar functions for both isoforms.en_US
dc.description.sponsorshipINTERNATIONAL JOURNAL OF ADVANCED RESEARCHen_US
dc.identifier.citation1. Baird, B.N., Schliekelman, M.J., Ahn, Y.H., Chen, Y., Roybal, J.D., Gill, B.J., Mishra, D.K., Erez, B., O'Reilly, M., Yang, Y., Patel, M., Liu, X., Thilaganathan, N., Larina, I.V., Dickinson, M.E., West, J.L., Gibbons, D.L., Liu, D.D., Kim, M.P., Hicks, J.M., Wistuba, I.I., Hanash, S.M. &Kurie, J.M. (2013). Fibulin-2 is a driver of malignant progression in lung adenocarcinoma. PloS one, 8, e67054. 2. Bernfield, M., Gotte, M., Park, P.W., Reizes, O., Fitzgerald, M.L., Lincecum, J. &Zako, M. (1999).Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem, 68, 729. 3. Beroud, C., Collod-Beroud, G., Boileau, C., Soussi, T. &Junien, C. (2000). UMD (Universal mutation database): a generic software to build and analyze locus-specific databases. Hum Mut, 15, 86. 4. Brinckmann, J., Hunzelmann, N., El-Hallous, E., Krieg, T., Sakai, L.Y., Krengel, S. & Reinhardt, D.P. (2005). Absence of autoantibodies against correctly folded recombinant fibrillin-1 protein in systemic sclerosis patients. Arthr Res & Therapy, 7, R1221. 5. Cain, S.A., Baldock, C., Gallagher, J., Morgan, A., Bax, D.V., Weiss, A.S., Shuttleworth, C.A. &Kielty, C.M. (2005). Fibrillin-1 interactions with heparin. Implications for microfibril and elastic fiber assembly. J Biol Chem, 280, 30526. 6. Callewaert, B.L., Loeys, B.L., Ficcadenti, A., Vermeer, S., Landgren, M., Kroes, H.Y., Yaron, Y., Pope, M., Foulds, N., Boute, O., Galán, F., Kingston, H., Van der Aa, N., Salcedo, I., Swinkels, M.E., WallgrenPettersson, C., Gabrielli, O., De Backer, J., Coucke, P.J. & De Paepe, A.M. (2009). Comprehensive clinical and molecular assessment of 32 probands with congenital contractural arachnodactyly: report of 14 novel ISSN 2320-5407 International Journal of Advanced Research (2016), Volume 4, Issue 2, 819-828 827 mutations and review of the literature. Hum Mut, 30, 334. 7. Campbell, I.D. & Bork, P. (1993).Epidermal growth factor-like modules. Curr Opin Struct Biol, 3, 385. 8. Caplan, A.I.(1991).Mesenchymal stem cells. J Orthopaed Res, 9, 641. 9. Carey, D.J., Conner, K., Asundi, V.K., O'Mahony, D.J., Stahl, R.C., Showalter, L., Cizmeci-Smith, G., Hartman, J. &Rothblum, L.I. (1997).cDNA cloning, genomic organization, and in vivo expression of rat Nsyndecan. J Biol Chem, 272, 2873. 10. Charbonneau, N.L., Ono, R.N., Corson, G.M., Keene, D.R. & Sakai, L.Y. (2004).Fine tuning of growth factor signals depends on fibrillin microfibril networks. Birth Defects Res Part C: Embr Today: Rev, 72, 37. 11. Chen, Y., Lei, Y.P., Zheng, H.X., Wang, W., Cheng, H.B., Zhang, J., Wang, H.Y., Jin, L. & Li, H. (2009). A novel mutation (C1425Y) in the FBN2 gene in a father and son with congenital contractural arachnodactyly. Genet Test & Mol Biomarkers, 13, 295. 12. Corson, G.M., Charbonneau, N.L., Keene, D.R. & Sakai, L.Y. (2004). Differential expression of fibrillin-3 adds to microfibril variety in human and avian, but not rodent, connective tissues. Genomics, 83, 461. 13. Dietz, H.C., Cutting, G.R., Pyeritz, R.E., Maslen, C.L., Sakai, L.Y., Corson, G.M., Puffenberger, E.G., Hamosh, A., Nanthakumar, E.J., Curristin, S.M., Stetten, G., Meyers, D.A. &Francomanoet, C.A. (1991). Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature, 352, 337. 14. El-Hallous, E., Sasaki, T., Hubmacher, D., Getie, M., Tiedemann, K., Brinckmann, J., Batge, B., Davis, E.C. & Reinhardt, D.P. (2007). Fibrillin-1 interactions with fibulins depend on the first hybrid domain and provide an adaptor function to tropoelastin. J Biol Chem, 282, 8935. 15. Faivre, L., Collod-Beroud, G., Loeys, B.L., Child, A., Binquet, C., Gautier, E., Callewaert, B., Arbustini, E., Mayer, K., Arslan-Kirchner, M., Kiotsekoglou, A., Comeglio, P., Marziliano, N., Dietz, H.C., Halliday, D., Beroud, C., Bonithon-Kopp, C., Claustres, M., Muti, C., Plauchu, H., Robinson, P.N., Adès, L.C., Biggin, A., Benetts, B., Brett, M., Holman, K.J., De Backer, J., Coucke, P., Francke, U., De Paepe, A., Jondeau, G. &Boileau, C. (2007). Effect of mutation type and location on clinical outcome in 1,013 probands with Marfan syndrome or related phenotypes and FBN1 mutations: an international study. AJHG, 81, 454. 16. Fontanil, T., Rua, S., Llamazares, M., Moncada-Pazos, A., Quiros, P.M., Garcia-Suarez, O., Vega, J.A., Sasaki, T., Mohamedi, Y., Esteban, M.M., Obaya, A.J. & Cal, S. (2014). Interaction between the ADAMTS12 metalloprotease and fibulin-2 induces tumor-suppressive effects in breast cancer cells. Onco target, 5, 1253. 17. Hernandez, M.R. (1992).Ultrastructural immune cyto-chemical analysis of elastin in the human lamina cribrosa. Changes in elastic fibers in primary open-angle glaucoma. Invest Ophth & Visual Sci, 33, 2891. 18. Hume, D.A., Summers, K.M., Raza, S., Baillie, J.K. & Freeman, T.C. (2010). Functional clustering and lineage markers: insights into cellular differentiation and gene function from large-scale microarray studies of purified primary cell populations. Genomics, 95, 328. 19. Hunzelmann, N., Nischt, R., Brenneisen, P., Eickert, A. & Krieg, T. (2001). Increased deposition of fibulin2 in solar elastosis and its colocalization with elastic fibers. Br J Dermatol, 145, 217. 20. Iozzo, R.V., Pillarisetti, J., Sharma, B., Murdoch, A.D., Danielson, K.G., Uitto, J. &Mauviel, A. (1997). Structural and functional characterization of the human perlecan gene promoter. Transcriptional activation by transforming growth factor-beta via a nuclear factor 1-binding element. J Biol Chem, 272, 5219. 21. Keene, D.R., Maddox, B.K., Kuo, H.J., Sakai, L.Y. & Glanville, R.W. (1991). Extraction of extendable beaded structures and their identification as fibrillin-containing extracellular matrix microfibrils. J Histochem & Cytochem, 39, 441. 22. Lee, B., Godfrey, M., Vitale, E., Hori, H., Mattei, M.G., Sarfarazi, M., Tsipouras, P., Ramirez, F. & Hollister, D.W. (1991). Linkage of Marfan syndrome and a phenotypically related disorder to two different fibrillin genes. Nature, 352, 330. 23. Lin, G., Tiedemann, K., Vollbrandt, T., Peters, H., Batge, B., Brinckmann, J. & Reinhardt, D.P. (2002).Homo- and heterotypic fibrillin-1 and -2 interactions constitute the basis for the assembly of microfibrils. J Biol Chem, 277, 50795. 24. Loeys, B.L., Dietz, H.C., Braverman, A.C., Callewaert, B.L., De Backer, J., Devereux, R.B., HilhorstHofstee, Y., Jondeau, G., Faivre, L., Milewicz, D.M., Pyeritz, R.E., Sponseller, P.D., Wordsworth, P. & De Paepe, A.M. (2010). The revised Ghent nosology for the Marfan syndrome. J Med Genet, 47, 476. 25. Missan, D.S., Chittur, S.V. &Dipersio, C.M. (2014). Regulation of Fibulin-2 Gene Expression by Integrin alpha-3-beta-1 Contributes to the Invasive Phenotype of Transformed Keratinocytes. J Invest Dermat, 134, 2418. 26. Nagase, T., Nakayama, M., Nakajima, D., Kikuno, R. &Ohara.O. (2001).Prediction of the coding sequences of unidentified human genes XX: The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res, 8, 85. ISSN 2320-5407 International Journal of Advanced Research (2016), Volume 4, Issue 2, 819-828 828 27. Olijnyk, D., Ibrahim, A.M., Ferrier, R.K., Tsuda, T., Chu, M.L., Gusterson, B.A., Stein, T.& Morris, J.S. (2014). Fibulin-2 is involved in early extracellular matrix development of the outgrowing mouse mammary epithelium. Cell Mol Life Sci, 71(19), 3811-28. 28. Putnam, E.A., Zhang, H., Ramirez, F. &Milewicz, D.M. (1995). Fibrillin-2 (FBN2) mutations result in the Marfan-like disorder, congenital contractural arachnodactyly. Nat Genet, 11, 456. 29. Raats, C.J., van den, B.J. &Berden, J.H. (2000). Glomerular heparan sulfate alterations: mechanisms and relevance for proteinuria. Kidney Int, 57, 385. 30. Raghunath, M., Tschödrich-Rotter, M., Sasaki, T., Meuli, M., Chu, M.L. &Timpl, R. (1999). Confocal laser scanning analysis of the association of fibulin-2 with fibrillin-1 and fibronectin define different stages of skin regeneration. J Invest Dermatol, 112, 97. 31. Ramirez, F., Sakai, L.Y., Dietz, H.C. & Rifkin, D.B. (2004). Fibrillin microfibrils: multipurpose extracellular networks in organismal physiology. Physiol Genom, 19, 151. 32. Reinhardt, D.P., Keene, D.R., Corson, G.M., Poschl, E., Bachinger, H.P., Gambee, J.E. & Sakai, L.Y. (1996a). Fibrillin-1: organization in microfibrils and structural properties. J Mol Biol, 258, 104. 33. Reinhardt, D.P., Sasaki, T., Dzamba, B.J., Keene, D.R., Chu, M.L., Gohring, W., Timpl, R. & Sakai, L.Y. (1996b). Fibrillin-1 and fibulin-2 interact and are colocalized in some tissues. J Biol Chem, 271, 19489. 34. Ritty, T.M., Broekelmann, T.J., Werneck, C.C. &Mecham, R.P. (2003). Fibrillin-1 and -2 contain heparinbinding sites important for matrix deposition and that support cell attachment. Biochem J, 375, 425. 35. Robertson, I., Jensen, S. &Handford, P. (2011). TB domain proteins: evolutionary insights into the multifaceted roles of fibrillins and LTBPs. Biochem J, 433, 263. 36. Rock, M.J., Cain, S.A., Freeman, L.J., Morgan, A., Mellody, K., Marson, A.,Shuttleworth, C.A., Weiss, A.S. &Kielty, C.M. (2004). Molecular basis of elastic fiber formation: Critical interactions and a tropoelastinfibrillin-1 cross-link. J Biol Chem, 279, ence23748. 37. Sakai, L.Y., Keene, D.R. &Engvall, E. (1986). Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J Cell Biol, 103, 2499. 38. Sasaki, T., Mann, K., Wiedemann, H., Goehring, W., Lustig, A., Engel, J., Chu, M.L. &Timpl, R. (1997). Dimer model for the microfibrillar protein fibulin-2 and identification of the connecting disulfide bridge. EMBO J, 16, 3035. 39. Sengle, G., Tsutsui, K., Keene, D.R., Tufa, S.F., Carlson, E.J., Charbonneau, N.L., Ono, R.N., Sasaki, T., Wirtz, M.K., Samples, J.R., Fessler, L.I., Fessler, J.H., Sekiguchi, K., Hayflick, S.J. & Sakai, L.Y. (2012). Micro-environmental regulation by fibrillin-1. PLoS Genet, 8, e1002425. 40. Shi, M., Zhu, J., Wang, R., Chen, X., Mi, L., Walz, T. & Springer, T.A. (2011). Latent TGF-beta structure and activation. Nature, 474, 343. 41. Summers, K.M., Raza, S., van Nimwegen, E., Freeman, T.C. & Hume, D.A. (2010). Co-expression of FBN1 with mesenchyme-specific genes in mouse cell lines: implications for phenotypic variability in Marfan syndrome. EJHG, 18, 1209. 42. Tiedemann, K., Bätge, B., Müller, P.K. & Reinhardt, D.P. (2001). Interactions of fibrillin-1 with heparin/heparan sulfate: Implications for microfibrillar assembly. J Biol Chem, 276, 36035. 43. Toole, B.P. (2000). Hyaluronan is not just a goo! J Clin Invest, 106, 335. 44. Urbanek, M., Sam, S., Legro, R.S. &Dunaif, A. (2007). Identification of a polycystic ovary syndrome susceptibility variant in fibrillin-3 and association with a metabolic phenotype. J Clin Endocrin & Metabol, 92, 4191. 45. Vollbrandt, T., Tiedemann, K., El-Hallous, E., Lin, G., Brinckmann, J., John, H., Batge, B., Notbohm, H. & Reinhardt, D.P. (2004). Consequences of cysteine mutations in calcium-binding epidermal growth factor modules of fibrillin-1. J Biol Chem, 279, 32924. 46. Zhang, H., Apfelroth, S.D., Hu, W., Davis, E.C., Sanguineti, C., Bonadio, J., Mecham, R.P. & Ramirez, F. (1994). Structure and expression of fibrillin-2, a novel microfibrillar component preferentially located in elastic matrices. J Cell Biol, 124, 855.en_US
dc.identifier.issn2320-5407
dc.identifier.urihttps://t.ly/kvPyJ
dc.language.isoenen_US
dc.publisherINTERNATIONAL JOURNAL OF ADVANCED RESEARCHen_US
dc.relation.ispartofseriesInternational Journal;Volume: 4 Issue: 2 Pages: 819-828
dc.subjectUniversity of Fibrillin, Marfan syndrome, Microfibrils, Extracellular matrix, Fibulin-2, Heparin/Heparan sulfateen_US
dc.titleINTERACTIONS OF N-TERMINUS OF HUMAN RECOMBINANT FIBRILLIN-3 WITH FIBULIN-2 AND HEPARIN.en_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Faculty of Biotechnology Research Paper

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
51 B
Format:
Item-specific license agreed upon to submission
Description: