Design, synthesis and structure-activity relationship of novel semi-synthetic flavonoids as antiproliferative agents
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Ragab F.A. | |
dc.contributor.author | Yahya T.A.A. | |
dc.contributor.author | El-Naa M.M. | |
dc.contributor.author | Arafa R.K. | |
dc.contributor.other | Pharmaceutical Chemistry Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Cairo University | |
dc.contributor.other | 11562 Cairo | |
dc.contributor.other | Egypt; Medicinal Chemistry Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Sana'a University | |
dc.contributor.other | Sana'a | |
dc.contributor.other | Yemen; Pharmacology and Toxicology Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | October University for Modern Sciences and Arts | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:42:07Z | |
dc.date.available | 2020-01-09T20:42:07Z | |
dc.date.issued | 2014 | |
dc.description | Scopus | |
dc.description.abstract | Various flavonoid scaffold based derivatives viz furochalcones (3a-e, 6a-d and 9a-d), furoflavones (10a-d, 11a-d, 12a-d, 18a&b), flavones (21a-d), furoaurones (13a,b, 14a-d and 15a-d) and 7-styrylfurochromones (22a-d and 25a-e) were designed and synthesized. The novel compounds were evaluated for their antiproliferative activity against a panel of 60 cancer cell lines comprising 9 types of tumors. Ten compounds belonging to the major subgroups of flavonoids viz furochalcones (3a, 3d, 6b, 9a and 9b), furoflavones (12a and 12c), furoaurones (15d), styrylfurochromones (25b and 25e) showed very promising activity. These active compounds were also evaluated in vitro as kinase inhibitors against CDK2/cyclin E1, CDK4/cyclin D1 and GSK-3? and the best inhibition was displayed against GSK-3? with the allylfurochalcone derivative 9b exhibiting 80% decrease in GSK-3? catalytic activity. On the other hand, the styrylfurochromone 25e interestingly showed a 13% enhancement of GSK-3? catalytic power and a 12% reduction in CDK4/cyclin D1 activity. Finally, the in vivo anti-tumor activity of 25e was evaluated against breast cancer induced in mice. The results showed a profound anti-tumor effect of 25e that accompanies a significant increase and decrease in the levels of GSK-3? and cyclin D1, respectively. � 2014 Elsevier Masson SAS. All rights reserved. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=17464&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1016/j.ejmech.2014.06.007 | |
dc.identifier.doi | PubMed ID 24937184 | |
dc.identifier.issn | 2235234 | |
dc.identifier.other | https://doi.org/10.1016/j.ejmech.2014.06.007 | |
dc.identifier.other | PubMed ID 24937184 | |
dc.identifier.uri | https://t.ly/2d3Xk | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier Masson SAS | en_US |
dc.relation.ispartofseries | European Journal of Medicinal Chemistry | |
dc.relation.ispartofseries | 82 | |
dc.subject | Cytotoxicity | en_US |
dc.subject | Furoaurones | en_US |
dc.subject | Furochalcones | en_US |
dc.subject | Furoflavones | en_US |
dc.subject | Furostyrylfurochromones | en_US |
dc.subject | Kinase inhibition | en_US |
dc.subject | 1 (6 hydroxy 4 methoxy 1 benzofuran 5 yl) 3 (2 methoxyphenyl)prop 2 en 1 one | en_US |
dc.subject | 1 (6 hydroxy 4 methoxy 1 benzofuran 5 yl) 3 (substituted)phenylprop 2 en 1 one | en_US |
dc.subject | 1 (7 allyl 6 hydroxy 4 methoxy 1 benzofuran 5 yl) 3 (4 chlorophenyl) prop 2 en 1 one | en_US |
dc.subject | 1 (7 allyl 6 hydroxy 4 methoxy 1 benzofuran 5 yl) 3 (substituted)phenyl prop 2 en 1 one | en_US |
dc.subject | 1 (7 allyl 6 hydroxy 4 methoxybenzofuran 5 yl) 3 (2methoxyphenyl)prop 2 en 1 one | en_US |
dc.subject | 1 (7 bromo 6 hydroxy 4 methoxy 1 benzofuran 5 yl) 3 (2 methoxy phenyl)prop 2 en 1 one | en_US |
dc.subject | 1 (7 bromo 6 hydroxy 4 methoxy 1 benzofuran 5 yl) 3 (4 methoxy phenyl)prop 2 en 1 one | en_US |
dc.subject | 1 (7 bromo 6 hydroxy 4 methoxy 1 benzofuran 5 yl) 3 (chlorophenyl)prop 2 en 1 one | en_US |
dc.subject | 1 (7 bromo 6 hydroxy 4 methoxy 1 benzofuran-5 yl) 3 phenylprop 2 en 1 one | en_US |
dc.subject | 1 (7 bromo 6 hydroxy 4 methoxy 1 benzofuran-5 yl) 3 substituted phenylprop 2 en 1 one | en_US |
dc.subject | 3 (4 methoxy 5 oxo 7 (substituted)phenyl 5h furo[3,2 g]chromen 9 yl)acrylaldehyde | en_US |
dc.subject | 3 (4 methoxy 5 oxo 7 phenyl 5h furo[3,2 g]chromen 9 yl) acrylaldehyde | en_US |
dc.subject | 3 [4 methoxy 7 (4 methoxyphenyl) 5 oxo 5h furo[3,2 g] chromen 9 yl]acryl aldehyde | en_US |
dc.subject | 3 [7 (4 chlorophenyl) 4 methoxy 5 oxo 5h furo[3,2 g] chromen 9 yl]acrylaldehyde | en_US |
dc.subject | 4 methoxy 7 (2 methoxyphenyl) 5h furo[3,2 g]chromen 5 one | en_US |
dc.subject | 4 methoxy 7 (substituted)phenyl furo[3,2 g]chromen 5 one | en_US |
dc.subject | 4,9 dimethoxy 7 [2 (4 dimethylaminophenyl)vinyl] 6 (morpholin 4 ylmethyl) 5h furo [3,2 g]chromen 5 one | en_US |
dc.subject | 9 bromo 4 methoxy 7 (2 methoxyphenyl) 5h furo[3,2 g] chromen 5 one | en_US |
dc.subject | 9 bromo 4 methoxy 7 (4 methoxyphenyl) 5h furo[3,2 g] chromen 5 one | en_US |
dc.subject | 9 bromo 4 methoxy 7 (substituted)phenyl furo[3,2 g]chromen 5 one | en_US |
dc.subject | 9 bromo 4 methoxy 7 phenyl 5h furo[3,2 g]chromen 5 one | en_US |
dc.subject | 9 bromo 7 (4 chlorophenyl) 4 methoxy 5h furo[3,2 g]chromen 5 one | en_US |
dc.subject | antineoplastic agent | en_US |
dc.subject | cyclin D1 | en_US |
dc.subject | cyclin dependent kinase 2 | en_US |
dc.subject | cyclin dependent kinase 4 | en_US |
dc.subject | cyclin E | en_US |
dc.subject | flavonoid | en_US |
dc.subject | glycogen synthase kinase 3beta | en_US |
dc.subject | unclassified drug | en_US |
dc.subject | unindexed drug | en_US |
dc.subject | antineoplastic agent | en_US |
dc.subject | flavonoid | en_US |
dc.subject | animal experiment | en_US |
dc.subject | animal model | en_US |
dc.subject | antineoplastic activity | en_US |
dc.subject | antiproliferative activity | en_US |
dc.subject | article | en_US |
dc.subject | brain cancer | en_US |
dc.subject | breast cancer | en_US |
dc.subject | cancer cell | en_US |
dc.subject | cancer inhibition | en_US |
dc.subject | cancer size | en_US |
dc.subject | colon cancer | en_US |
dc.subject | controlled study | en_US |
dc.subject | drug cytotoxicity | en_US |
dc.subject | drug design | en_US |
dc.subject | drug mechanism | en_US |
dc.subject | drug megadose | en_US |
dc.subject | drug screening | en_US |
dc.subject | drug synthesis | en_US |
dc.subject | Ehrlich ascites tumor | en_US |
dc.subject | enzyme activity | en_US |
dc.subject | enzyme inhibition | en_US |
dc.subject | human | en_US |
dc.subject | human cell | en_US |
dc.subject | kidney cancer | en_US |
dc.subject | leukemia | en_US |
dc.subject | low drug dose | en_US |
dc.subject | lung non small cell cancer | en_US |
dc.subject | melanoma | en_US |
dc.subject | mouse | en_US |
dc.subject | nonhuman | en_US |
dc.subject | prostate cancer | en_US |
dc.subject | protein expression | en_US |
dc.subject | proton nuclear magnetic resonance | en_US |
dc.subject | stereospecificity | en_US |
dc.subject | structure activity relation | en_US |
dc.subject | animal | en_US |
dc.subject | Bagg albino mouse | en_US |
dc.subject | Carcinoma, Ehrlich Tumor | en_US |
dc.subject | cell proliferation | en_US |
dc.subject | chemical structure | en_US |
dc.subject | chemistry | en_US |
dc.subject | dose response | en_US |
dc.subject | drug effects | en_US |
dc.subject | female | en_US |
dc.subject | pathology | en_US |
dc.subject | structure activity relation | en_US |
dc.subject | synthesis | en_US |
dc.subject | tumor cell line | en_US |
dc.subject | Animals | en_US |
dc.subject | Antineoplastic Agents | en_US |
dc.subject | Carcinoma, Ehrlich Tumor | en_US |
dc.subject | Cell Line, Tumor | en_US |
dc.subject | Cell Proliferation | en_US |
dc.subject | Dose-Response Relationship, Drug | en_US |
dc.subject | Drug Design | en_US |
dc.subject | Drug Screening Assays, Antitumor | en_US |
dc.subject | Female | en_US |
dc.subject | Flavonoids | en_US |
dc.subject | Humans | en_US |
dc.subject | Mice | en_US |
dc.subject | Mice, Inbred BALB C | en_US |
dc.subject | Molecular Structure | en_US |
dc.subject | Structure-Activity Relationship | en_US |
dc.title | Design, synthesis and structure-activity relationship of novel semi-synthetic flavonoids as antiproliferative agents | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Aherne, S.A., O'Brien, N.M., Dietary flavonols: Chemistry, food content, and metabolism (2002) Nutrition, 18 (1), pp. 75-81. , DOI 10.1016/S0899-9007(01)00695-5, PII S0899900701006955; Craig, W.J., Health-promoting properties of common herbs (1999) American Journal of Clinical Nutrition, 70 (3 SUPPL.), pp. 491S-499S; Ren, W., Qiao, Z., Wang, H., Zhu, L., Zhang, L., Flavonoids: Promising anticancer agents (2003) Medicinal Research Reviews, 23 (4), pp. 519-534. , DOI 10.1002/med.10033; Lopez-Lazaro, M., Flavonoids as anticancer agents: Structure-activity relationship study (2002) Current Medicinal Chemistry - Anti-Cancer Agents, 2 (6), pp. 691-714. , DOI 10.2174/1568011023353714; So, F.V., Guthrie, N., Chambers, A.F., Carroll, K.K., Inhibition of proliferation of estrogen receptor-positive MCF-7 human breast cancer cells by flavonoids in the presence and absence of excess estrogen (1997) Cancer Letters, 112 (2), pp. 127-133. , DOI 10.1016/S0304-3835(96)04557-0, PII S0304383596045570; Ibrahim, A.-R., Abul-Hajj, Y.J., Aromatase inhibition by flavonoids (1990) Journal of Steroid Biochemistry and Molecular Biology, 37 (2), pp. 257-260. , DOI 10.1016/0960-0760(90)90335-I; Jeong, H.J., Shin, Y.G., Kim, I.H., Pezzuto, J.M., Inhibition of aromatase activity by flavonoids (1999) Arch. Pharm. Res., 22, pp. 309-312; Miksicek, R.J., Estrogenic flavonoids: Structural requirements for biological activity (1995) Proc. Soc. Exp. Biol. Med., 208, pp. 44-50; Liu, H.L., Jiang, W.B., Xie, M.X., Flavonoids: Recent advances as anticancer drugs (2010) Recent Pat. Anticancer Drug Discov., 5, pp. 152-164; Tan, A.R., Swain, S.M., Review of flavopiridol, a cyclin-dependent kinase inhibitor, as breast cancer therapy (2002) Seminars in Oncology, 29 (3 SUPPL. 11), pp. 77-85; Gerwick, W.H., Lopez, A., Van Duyne, G.D., Hormothamnione, a novel cytotoxic styrylchromone from the marine cyanophyte Hormothamnion enteromorphoides Grunow (1986) Tetrahedron Letters, 27 (18), pp. 1979-1982. , DOI 10.1016/S0040-4039(00)84426-3; Gerwik, W.H., 6-Desmethoxyhormothamnione, a new cytotoxic styrylchromone from the marine cryptophyte Chrysophaeum taylori (1989) J. Nat. Prod., 52, pp. 252-256; Lee, K.Y., Nam, D.H., Moon, C.S., Seo, S.H., Lee, J.Y., Lee, Y.S., Synthesis and anticancer activity of lavendustin A derivatives containing arylethenylchromone substituents (2006) European Journal of Medicinal Chemistry, 41 (8), pp. 991-996. , DOI 10.1016/j.ejmech.2006.04.008, PII S0223523406001541; Kumar, S.K., Hager, E., Pettit, C., Gurulingappa, H., Davidson, N.E., Khan, S.R., Design, synthesis, and evaluation of novel boronic-chalcone derivatives as antitumor agents (2003) Journal of Medicinal Chemistry, 46 (14), pp. 2813-2815. , DOI 10.1021/jm030213+; Huang, L., Wall, M.E., Wani, M.C., Navarro, H., Santisuk, T., Reutrakul, V., Seo, E.-K., Kinghorn, A.D., New compounds with DNA strand-scission activity from the combined leaf and stem of Uvaria hamiltonii (1998) Journal of Natural Products, 61 (4), pp. 446-450. , DOI 10.1021/np9703609; Ali, S., El-Rayes, B.F., Aranha, O., Sarkar, F.H., Philip, P.A., Sequence dependent potentiation of gemcitabine by flavopiridol in human breast cancer cells (2005) Breast Cancer Research and Treatment, 90 (1), pp. 25-31. , DOI 10.1007/s10549-004-2179-x; Doble, B.W., Woodgett, J.R., GSK-3: Tricks of the trade for a multi-tasking kinase (2003) Journal of Cell Science, 116 (7), pp. 1175-1186. , DOI 10.1242/jcs.00384; Grimes, C.A., Jope, R.S., The multifaceted roles of glycogen synthase kinase 3? in cellular signaling (2001) Progress in Neurobiology, 65 (4), pp. 391-426. , DOI 10.1016/S0301-0082(01)00011-9, PII S0301008201000119; Luo, J., Glycogen synthase kinase 3beta (GSK3beta) in tumorigenesis and cancer chemotherapy (2009) Cancer Lett., 273, pp. 194-200; Hall, M., Peters, G., Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer (1996) Advances in Cancer Research, 68, pp. 67-108; Sutherland, R.L., Musgrove, E.A., Cyclin D1 and mammary carcinoma: New insights from transgenic mouse models (2002) Breast Cancer Research, 4 (1), pp. 14-17. , DOI 10.1186/bcr411; C�rdenas, M., Marder, M., Blank, V.C., Roguin, L.P., Antitumor activity of some natural flavonoids and synthetic derivatives on various human and murine cancer cell lines (2006) Bioorg. Med. Chem., 14, pp. 2966-2971; Navarini, A.L.F., Chiaradia, L.D., Mascarello, A., Fritzen, M., Nunes, R.J., Yunes, R.A., Creczynski-Pasa, T.B., Hydroxychalcones induce apoptosis in B16-F10 melanoma cells via GSH and ATP depletion (2009) Eur. J. Med. Chem., 44, pp. 1630-1637; Kerr, D.J., Kaye, S.B., Graham, J., Phase I and pharmacokinetic study of LM985 (flavone acetic acid ester) (1986) Cancer Research, 46 (6), pp. 3142-3146; Valenti, P., Bisi, A., Rampa, A., Belluti, F., Gobbi, S., Zampiron, A., Carrara, M., Synthesis and biological activity of some rigid analogues of flavone-8- acetic acid (2000) Bioorganic and Medicinal Chemistry, 8 (1), pp. 239-246. , DOI 10.1016/S0968-0896(99)00282-5, PII S0968089699002825; Nuessler, V., Scheulen, M.E., Oberneder, R., Kriegmair, M., Goebel, K.J., Rathgeb, F., Wurst, W., Wilmanns, W., Phase i and pharmacokinetic study of the P-glycoprotein modulator dexniguldipine-HCl (1997) Eur. J. Med. Res., 2, pp. 55-61; Dimmock, J.R., Murthi Kandepu, N., Hetherington, M., Wilson Quail, J., Pugazhenthi, U., Sudom, A.M., Chamankhah, M., Balzarini, J., Cytotoxic activities of Mannich bases of chalcones and related compounds (1998) Journal of Medicinal Chemistry, 41 (7), pp. 1014-1026. , DOI 10.1021/jm970432t; Gul, H.I., Yerdelen, K.O., Gul, M., Das, U., Pandit, B., Li, P.-K., Secen, H., Sahin, F., Synthesis of 4?-hydroxy-3?-piperidinomethylchalcone derivatives and their cytotoxicity against PC-3 cell lines (2007) Archiv der Pharmazie, 340 (4), pp. 195-201. , DOI 10.1002/ardp.200600072; Schonberg, A., Sina, A., Khellin and allied compounds (1950) J. Am. Chem. Soc., 72, pp. 1611-1616; Dominguez, J.N., Leon, C., Rodrigues, J., De Dominguez, N.G., Gut, J., Rosenthal, P.J., Synthesis and evaluation of new antimalarial phenylurenyl chalcone derivatives (2005) Journal of Medicinal Chemistry, 48 (10), pp. 3654-3658. , DOI 10.1021/jm058208o; Starkowsky, N.A., Addition of urea, thiourea and iodine to the natural benzopyrones of Ammi. Visnaga Linn. and Ammi. Majus Linn (1959) Egypt. J. Chem., 2, pp. 111-117; Schonberg, A., Badran, N., Starkovesky, N.A., Furochromones and coumarins VII. Degradation of visnagin, khellin and related substances, experiments with chromic acid and hydrogen peroxide, and synthesis of eugenitin (1953) J. Am. Chem. Soc., 75, pp. 4992-4995; El-Desoky, E.-S.I., Synthesis and reactions of some new allyl furobenzopyranone derivatives (2007) Journal of Heterocyclic Chemistry, 44 (6), pp. 1309-1315; Mahal, H., Rai, H., Venkatarama, K., Synthetical experiments in the chromone group. Part XVI. Chalkones and flavanones and their oxidation to flavones by means of selenium dioxide (1935) J. Chem. Soc., pp. 866-868; Geissman, T.A., Fukushima, D.K., Flavonones and gelated compounds (1948) J. Am. Chem. Soc., 70 M, pp. 1686-1689; Schonberg, A., Badran, N., Starkowsky, N.A., Furo-chromones and -coumarins. XII. Synthesis of fraxinol from bergapten and of baicalein from visnagin (1955) J. Am. Chem. Soc., 77, pp. 5390-5392; Schonberg, A., Mustafa, A., Aziz, G., Diels-Alder reaction. II. Experiments with 2-styrylchromones. on the nature of the dimer of 1,3-diphenylisobenzofuran (1954) J. Am. Chem. Soc., 76, pp. 4576-4577; Schonberg, A., Sina, A., On visnagin and khellin and related compounds. A simple synthesis of chromone (1950) J. Am. Chem. Soc., 72, pp. 3396-3399; Ragab, F.A., Abd-El-Latif, H.A., Synthesis, hypotensive and antispasmodic activities of certain aminomethylchromones (1992) Bull. Fac. Phar. Cairo Univ., 30, pp. 215-221; Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J.T., Boyd, M.R., New colorimetric cytotoxicity assay for anticancer-drug screening (1990) Journal of the National Cancer Institute, 82 (13), pp. 1107-1112; Dong, J., Peng, J., Zhang, H., Mondesire, W.H., Jian, W., Mills, G.B., Hung, M.-C., Meric-Bernstam, F., Role of glycogen synthase kinase 3? in rapamycin-mediated cell cycle regulation and chemosensitivity (2005) Cancer Research, 65 (5), pp. 1961-1972. , DOI 10.1158/0008-5472.CAN-04-2501; Altiok, N., Mezzadra, H., Patel, P., Koyuturk, M., Altiok, S., (2008) Breast Cancer Res. Treat., 109, pp. 315-323; Nada, A.A., Zayed, M.F., El Din, N.K., El-Saidi, M.M.T., Hefny, E., Photochemical reaction of phenanthrenequinone with some new aurones derived from khellin and visnagin (2002) Synthetic Communications, 32 (9), pp. 1293-1302. , DOI 10.1081/SCC-120003624; Ragab, F.A., Hassan, G.S., Yossef, H.A., Hashem, H.A., Synthesis of 6- and 9-alkylaminomethyl furoflavones as gastroprotective agents (2007) European Journal of Medicinal Chemistry, 42 (8), pp. 1117-1127. , DOI 10.1016/j.ejmech.2007.01.019, PII S022352340700058X; Lee, I., Boucher, Y., Jain, R.K., Nicotinamide can lower tumor interstitial fluid pressure: Mechanistic and therapeutic implications (1992) Cancer Res., 52, pp. 3237-3240 | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_128.png
- Size:
- 2.73 KB
- Format:
- Portable Network Graphics
- Description: