Plasmid-mediated quinolone resistance in gram-negative pathogens isolated from cancer patients in Egypt

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorHamed S.M.
dc.contributor.authorAboshanab K.M.A.
dc.contributor.authorEl-Mahallawy H.A.
dc.contributor.authorHelmy M.M.
dc.contributor.authorAshour M.S.
dc.contributor.authorElkhatib W.F.
dc.contributor.otherDepartment of Microbiology and Immunology
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Sciences and Arts
dc.contributor.otherEgypt; Department of Microbiology and Immunology
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherAin Shams University
dc.contributor.otherAfrican Union Organization
dc.contributor.otherAbbassia
dc.contributor.otherCairo
dc.contributor.other11566
dc.contributor.otherEgypt; Department of Clinical Pathology
dc.contributor.otherNational Cancer Institute
dc.contributor.otherCairo University
dc.contributor.otherCairo
dc.contributor.otherEgypt; Department of Microbiology and Immunology
dc.contributor.otherFaculty of Medicine
dc.contributor.otherZagazig University
dc.contributor.otherZagazig
dc.contributor.otherEgypt; Department of Microbiology and Immunology
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherAl-Azhar University
dc.contributor.otherCairo
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:51Z
dc.date.available2020-01-09T20:40:51Z
dc.date.issued2018
dc.descriptionScopus
dc.description.abstractFluoroquinolones (FQs) are the drugs of choice for prophylaxis of bacterial infections in immunocompromised cancer patients. This study aimed to investigate FQ resistance and the prevalence of plasmid-mediated quinolone resistance (PMQR) determinants in 239 Gram-negative isolates collected at a tertiary care cancer hospital in Cairo, Egypt. Disc diffusion and broth microdilution tests showed that 70.7% of the isolates were nonsusceptible to ciprofloxacin (MIC50 = 64 ?g/ml). Polymerase chain reaction (PCR) revealed that 53.6% of the isolates carried at least one PMQR determinant, of which 23.4% were susceptible to ciprofloxacin. The most prevalent gene, aac(6?)-Ib-cr, was identified in 36.8% of the isolates, while qnr genes were harbored by 31.0% (qnrS, 24.3%; qnrB, 7.1%, and qnrA, 0.4%). The oqxAB genes were only detected in Klebsiella sp. isolates (92.5%). PMQR determinants were more likely detectable among isolates recovered from pediatric patients than adults (59.3% vs. 43.8%) and were significantly associated with ceftriaxone and gentamicin resistance. A combined genetic analysis using random amplified polymorphic DNA-PCR and enterobacterial repetitive intergenic consensus-PCR showed that most of the qnr-positive isolates were not clonal. Findings of the current study raised concerns about the efficacy of prophylactic use of FQs in cancer patients in our region. It also demonstrates the possible role of PMQR-positive ciprofloxacin-susceptible isolates in the dissemination of resistance to other antimicrobial agents and the urgent need to reconsider the existing FQ breakpoints defined by the Clinical and Laboratory Standards Institute. � Copyright 2018, Mary Ann Liebert, Inc., publishers 2018.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=19034&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1089/mdr.2017.0354
dc.identifier.doiPubMed ID 29653475
dc.identifier.issn10766294
dc.identifier.otherhttps://doi.org/10.1089/mdr.2017.0354
dc.identifier.otherPubMed ID 29653475
dc.identifier.urihttps://t.ly/mp3lr
dc.language.isoEnglishen_US
dc.publisherMary Ann Liebert Inc.en_US
dc.relation.ispartofseriesMicrobial Drug Resistance
dc.relation.ispartofseries24
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectUniversity of Modern Sciences and Arts
dc.subjectMSA University
dc.subjectcancer patientsen_US
dc.subjectEgypten_US
dc.subjectfluoroquinolonesen_US
dc.subjectGram negativeen_US
dc.subjectPMQRen_US
dc.subjectamikacinen_US
dc.subjectaminoglycosideen_US
dc.subjectcarbapenem derivativeen_US
dc.subjectceftriaxoneen_US
dc.subjectcephalosporin derivativeen_US
dc.subjectciprofloxacinen_US
dc.subjectgentamicinen_US
dc.subjectimipenemen_US
dc.subjectlevofloxacinen_US
dc.subjectnalidixic aciden_US
dc.subjectnorfloxacinen_US
dc.subjectquinolone derivativeen_US
dc.subjectantiinfective agenten_US
dc.subjectbeta lactamaseen_US
dc.subjectciprofloxacinen_US
dc.subjectquinolone derivativeen_US
dc.subjectaac(6') 1b geneen_US
dc.subjectadulten_US
dc.subjectantibiotic resistanceen_US
dc.subjectantibiotic sensitivityen_US
dc.subjectArticleen_US
dc.subjectbacterial geneen_US
dc.subjectbacterium isolationen_US
dc.subjectbroth dilutionen_US
dc.subjectcancer centeren_US
dc.subjectcancer patienten_US
dc.subjectdisk diffusionen_US
dc.subjectEgypten_US
dc.subjectgene identificationen_US
dc.subjectgenetic analysisen_US
dc.subjectGram negative bacteriumen_US
dc.subjecthumanen_US
dc.subjectin vitro studyen_US
dc.subjectKlebsiellaen_US
dc.subjectMIC50en_US
dc.subjectminimum inhibitory concentrationen_US
dc.subjectnonhumanen_US
dc.subjectOqxA geneen_US
dc.subjectoqxAB geneen_US
dc.subjectOqxB geneen_US
dc.subjectpediatric patienten_US
dc.subjectplasmiden_US
dc.subjectprevalenceen_US
dc.subjectpriority journalen_US
dc.subjectQepA geneen_US
dc.subjectqnr geneen_US
dc.subjectqnrA geneen_US
dc.subjectqnrB geneen_US
dc.subjectQnrS geneen_US
dc.subjectrandom amplified polymorphic DNAen_US
dc.subjecttertiary health careen_US
dc.subjectdrug effecten_US
dc.subjectgeneticsen_US
dc.subjectGram negative bacteriumen_US
dc.subjectGram negative infectionen_US
dc.subjectisolation and purificationen_US
dc.subjectmicrobial sensitivity testen_US
dc.subjectmicrobiologyen_US
dc.subjectmultidrug resistanceen_US
dc.subjectneoplasmen_US
dc.subjectplasmiden_US
dc.subjectAnti-Bacterial Agentsen_US
dc.subjectbeta-Lactamasesen_US
dc.subjectCiprofloxacinen_US
dc.subjectDrug Resistance, Multiple, Bacterialen_US
dc.subjectEgypten_US
dc.subjectFluoroquinolonesen_US
dc.subjectGenes, Bacterialen_US
dc.subjectGram-Negative Bacteriaen_US
dc.subjectGram-Negative Bacterial Infectionsen_US
dc.subjectHumansen_US
dc.subjectMicrobial Sensitivity Testsen_US
dc.subjectNeoplasmsen_US
dc.subjectPlasmidsen_US
dc.subjectQuinolonesen_US
dc.titlePlasmid-mediated quinolone resistance in gram-negative pathogens isolated from cancer patients in Egypten_US
dc.typeArticleen_US
dcterms.isReferencedBySchelenz, S., Nwaka, D., Hunter, P.R., Longitudinal surveillance of bacteraemia in haematology and oncology patients at a UK cancer centre and the impact of ciprofloxacin use on antimicrobial resistance (2013) J. Antimicrob. Chemother., 68, pp. 1431-1438; Baden, L.R., Swaminathan, S., Angarone, M., Blouin, G., Camins, B.C., Casper, C., Cooper, B., Smith, C., Prevention and treatment of cancer-related infections, version 2.2016, nccn clinical practice guidelines in oncology (2016) J. Natl. Compr. Canc. Netw., 14, pp. 882-913; Flowers, C.R., Seidenfeld, J., Bow, E.J., Karten, C., Gleason, C., Hawley, D.K., Kuderer, N.M., Ramsey, S.D., Antimicrobial prophylaxis and outpatient management of fever and neutropenia in adults treated for malignancy: American Society of Clinical Oncology clinical practice guideline (2013) J. Clin. Oncol., 31, pp. 794-810; Frere, P., Hermanne, J.P., Debouge, M.H., Fillet, G., Beguin, Y., Changing pattern of bacterial susceptibility to antibiotics in hematopoietic stem cell transplant recipients (2002) Bone Marrow Transplant., 29, pp. 589-594; Hooper, D.C., Jacoby, G.A., Topoisomerase inhibitors: Fluoroquinolone mechanisms of action and resistance (2016) Cold Spring Harb. Perspect. Med., 6. , pii: a025320; Correia, S., Poeta, P., Hebraud, M., Capelo, J.L., Igrejas, G., Mechanisms of quinolone action and resistance: Where do we stand? (2017) J. Med. Microbiol., 66, pp. 551-559; Albornoz, E., Tijet, N., De Belder, D., Gomez, S., Martino, F., Corso, A., Melano, R.G., Petroni, A., QnrE1, a member of a new family of plasmid-located quinolone resistance genes, originated from the chromosome of Enterobacter species (2017) Antimicrob Agents Chemother., 61; Redgrave, L.S., Sutton, S.B., Webber, M.A., Piddock, L.J., Fluoroquinolone resistance: Mechanisms, impact on bacteria, and role in evolutionary success (2014) Trends Microbiol., 22, pp. 438-445; Bow, E.J., Fluoroquinolones, antimicrobial resistance and neutropenic cancer patients (2011) Curr. Opin. Infect. Dis., 24, pp. 545-553; (2015) Performance Standards for Antimicrobial Susceptibility Testing, , CLSI.Twentieth Informational Supplement. CLSI document M100-S25. Clinical and Laboratory Standards Institute, Wayne, PA; Versalovic, J., Koeuth, T., Lupski, J.R., Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes (1991) Nucleic Acids Res., 19, pp. 6823-6831; Hopkins, K.L., Hilton, A.C., Restriction endonuclease analysis of RAPD-PCR amplicons derived from Shiga-like toxin-producing Escherichia coli O157 isolates (2001) J. Med. Microbiol., 50, pp. 90-95; Pacheco, A.B., Guth, B.E., Soares, K.C., De Almeida, D.F., Ferreira, L.C., Clonal relationships among Escherichia coli serogroup O6 isolates based on RAPD (1997) FEMS Microbiol. Lett., 148, pp. 255-260; Sennati, S., Santella, G., Di Conza, J., Pallecchi, L., Pino, M., Ghiglione, B., Rossolini, G.M., Gutkind, G., Changing epidemiology of extended-spectrum betalactamases in Argentina: Emergence of CTX-M-15 (2012) Antimicrob Agents Chemother., 56, pp. 6003-6005; Eftekhar, F., Nouri, P., Correlation of RAPDPCR profiles with ESBL production in clinical isolates of Klebsiella pneumoniae in Tehran (2015) J. Clin. Diagn. Res., 9, pp. DC01-03; Sachse, S., Bresan, S., Erhard, M., Edel, B., Pfister, W., Saupe, A., R�del, J., Comparison of multilocus sequence typing, RAPD, and MALDI-TOF mass spectrometry for typing of b-lactam-resistant Klebsiella pneumoniae strains.Diagn (2014) Microbiol. Infect. Dis., 80, pp. 267-271; Cartelle, M., Del Mar Tomas, M., Pertega, S., Beceiro, A., Dominguez, M.A., Velasco, D., Molina, F., Bou, G., Risk factors for colonization and infection in a hospital outbreak caused by a strain of Klebsiella pneumoniae with reduced susceptibility to expanded-spectrum cephalosporins (2004) J. Clin. Microbiol., 42, pp. 4242-4249; Zhang, S., Wang, Q., Ling, Y., Hu, X., Fluoroquinolone resistance in bacteremic and low risk febrile neutropenic patients with cancer (2015) BMC Cancer., 15, p. 42; Yanat, B., Rodriguez-Martinez, J.M., Touati, A., Plasmid-mediated quinolone resistance in Enterobacteriaceae: A systematic review with a focus on Mediterranean countries (2017) Eur. J. Clin. Microbiol. Infect. Dis., 36, pp. 421-435; El-Badawy, M.F., Tawakol, W.M., El-Far, S.W., Maghrabi, I.A., Al-Ghamdi, S.A., Mansy, M.S., Ashour, M.S., Shohayeb, M.M., Molecular identification of aminoglycosidemodifying enzymes and plasmid-mediated quinolone resistance genes among Klebsiella pneumoniae clinical isolates recovered from Egyptian patients (2017) Int. J. Microbiol., 2017, p. 8050432; Hassan, W.M., Hashim, A., Domany, R., Plasmid mediated quinolone resistance determinants qnr, aac(6�)-Ib-cr, and qep in ESBL-producing Escherichia coli clinical isolates from Egypt (2012) Indian J. Med. Microbiol., 30, pp. 442-447; Shibl, A.M., Al-Agamy, M.H., Khubnani, H., Senok, A.C., Tawfik, A.F., Livermore, D.M., High prevalence of acquired quinolone-resistance genes among Enterobacteriaceae from Saudi Arabia with CTX-M-15 beta-lactamase (2012) Diagn. Microbiol. Infect. Dis., 73, pp. 350-353; Vali, L., Dashti, A.A., Jadaon, M.M., El-Shazly, S., The emergence of plasmid mediated quinolone resistance qnrA2 in extended spectrum beta-lactamase producing Klebsiella pneumoniae in the Middle East (2015) Daru, 23, p. 34; Yanat, B., Machuca, J., Diaz-De-Alba, P., Mezhoud, H., Touati, A., Pascual, A., Rodriguez-Martinez, J.M., Characterization of plasmid-mediated quinolone resistance determinants in high-level quinolone-resistant Enterobacteriaceae isolates from the community: First report of qnrD gene in Algeria (2017) Microb. Drug Resist., 23, pp. 90-97; Yanat, B., Dali Yahia, R., Yazi, L., Machuca, J., Diaz-De-Alba, P., Touati, A., Pascual, A., Rodriguez-Martinez, J.M., Occurrence of the plasmid-mediated fluoroquinolone resistance qepA1 gene in two clonal clinical isolates of CTX-M-15-producing Escherichia coli from Algeria (2017) Microb. Drug Resist., 23, pp. 497-499; Jlili, N.E.H., Rejiba, S., Smaoui, H., Guillard, T., Chau, F., Kechrid, A., Cambau, E., Trend of plasmid-mediated quinolone resistance genes at the Children's Hospital in Tunisia (2013) J. Med. Microbiol., 63, pp. 195-202; Dahmen, S., Poirel, L., Mansour, W., Bouallegue, O., Nordmann, P., Prevalence of plasmid-mediated quinolone resistance determinants in Enterobacteriaceae from Tunisia (2010) Clin. Microbiol. Infect., 16, pp. 1019-1023; Guillard, T., Lebreil, A.L., Hansen, L.H., Kisserli, A., Berger, S., Lozniewski, A., Alauzet, C., De Champs, C., Discrimination between native and Tn6010-associated oqxAB in Klebsiella spp., Raoultella spp., and other Enterobacteriaceae by using a two-step strategy (2015) Antimicrob Agents Chemother., 59, pp. 5838-5840; Karah, N., Poirel, L., Bengtsson, S., Sundqvist, M., Kahlmeter, G., Nordmann, P., Sundsfjord, A., Samuelsen, O., Plasmid-mediated quinolone resistance determinants qnr and aac(6�)-Ib-cr in Escherichia coli and Klebsiella spp from Norway and Sweden (2010) Diagn. Microbiol. Infect. Dis., 66, pp. 425-431. , P. Norwegian Study Group on; Jiang, Y., Zhou, Z., Qian, Y., Wei, Z., Yu, Y., Hu, S., Li, L., Plasmid-mediated quinolone resistance determinants qnr and aac(6�)-Ib-cr in extended-spectrum beta-lactamaseproducing Escherichia coli and Klebsiella pneumoniae in China (2008) J. Antimicrob. Chemother., 61, pp. 1003-1006; Fabrega, A., Madurga, S., Giralt, E., Vila, J., Mechanism of action of and resistance to quinolones (2009) Microb. Biotechnol., 2, pp. 40-61; Pasom, W., Chanawong, A., Lulitanond, A., Wilailuckana, C., Kenprom, S., Puang-Ngern, P., Plasmidmediated quinolone resistance genes, aac(6�)-Ib-cr, qnrS, qnrB, and qnrA, in urinary isolates of Escherichia coli and Klebsiella pneumoniae at a teaching hospital, Thailand (2013) Jpn. J. Infect. Dis., 66, pp. 428-432; Piekarska, K., Wolkowicz, T., Zacharczuk, K., Rzeczkowska, M., Chrost, A., Bareja, E., Olak, M., Gierczynski, R., Co-existence of plasmid-mediated quinolone resistance determinants and mutations in gyrA and parC among fluoroquinolone-resistant clinical Enterobacteriaceae isolated in a tertiary hospital in Warsaw, Poland (2015) Int. J. Antimicrob. Agents, 45, pp. 238-243; Huang, Y., Ogutu, J.O., Gu, J., Ding, F., You, Y., Huo, Y., Zhao, H., Zhang, F., Comparative analysis of quinolone resistance in clinical isolates of Klebsiella pneumoniae and Escherichia coli from Chinese children and adults (2015) Biomed. Res. Int., 2015, p. 168292; Silva-Sanchez, J., Cruz-Trujillo, E., Barrios, H., Reyna-Flores, F., Sanchez-Perez, A., Characterization of plasmid-mediated quinolone resistance (PMQR) genes in extended-spectrum beta-lactamase-producing Enterobacteriaceae pediatric clinical isolates in Mexico (2013) PLoS One, 8, p. e77968. , Bacterial Resistance, and U. Garza-Ramos; Kim, N.H., Choi, E.H., Sung, J.Y., Oh, C.E., Kim, H.B., Kim, E.C., Lee, H.J., Prevalence of plasmid-mediated quinolone resistance genes and ciprofloxacin resistance in pediatric bloodstream isolates of Enterobacteriaceae over a 9-year period (2013) Jpn. J. Infect. Dis., 66, pp. 151-154; Zhou, T.L., Chen, X.J., Zhou, M.M., Zhao, Y.J., Luo, X.H., Bao, Q.Y., Prevalence of plasmid-mediated quinolone resistance in Escherichia coli isolates in Wenzhou, Southern China, 2002-2008 (2011) Jpn. J. Infect. Dis., 64, pp. 55-57; Jacoby, G.A., Strahilevitz, J., Hooper, D.C., Plasmidmediated quinolone resistance (2014) Microbiol. Spectr., 2, pp. 1-24; Ruiz, E., Saenz, Y., Zarazaga, M., Rocha-Gracia, R., Martinez-Martinez, L., Arlet, G., Torres, C., Qnr, aac(6�)-Ib-cr and qepA genes in Escherichia coli and Klebsiella spp.: Genetic environments and plasmid and chromosomal location (2012) J. Antimicrob. Chemother., 67, pp. 886-897; Robicsek, A., Strahilevitz, J., Jacoby, G.A., Macielag, M., Abbanat, D., Park, C.H., Bush, K., Hooper, D.C., Fluoroquinolone-modifying enzyme: A new adaptation of a common aminoglycoside acetyltransferase (2006) Nat. Med., 12, pp. 83-88; Robicsek, A., Jacoby, G.A., Hooper, D.C., The worldwide emergence of plasmid-mediated quinolone resistance (2006) Lancet Infect. Dis., 6, pp. 629-640; Lim, K.T., Yasin, R., Yeo, C.C., Puthucheary, S., Thong, K.L., Characterization of multidrug resistant ESBL-producing Escherichia coli isolates from hospitals in Malaysia (2009) J. Biomed. Biotechnol., 2009, p. 165637; Patton, T.G., Katz, S., Sobieski, R.J., Crupper, S.S., Genotyping of clinical Serratia marcescens isolates: A comparison of PCR-based methods (2001) FEMS Microbiol. Lett., 194, pp. 19-25; Bhowmick, P.P., Srikumar, S., Devegowda, D., Shekar, M., Ruwandeepika, D.H.A., Karunasagar, I., Serotyping &molecular characterization for study of genetic diversity among seafood associated nontyphoidal Salmonella serovars (2012) Indian J. Med. Res., 135, pp. 371-381; Lim, H., Lee, K.H., Hong, C.H., Bahk, G.J., Choi, W.S., Comparison of four molecular typing methods for the differentiation of Salmonella spp (2005) Int. J. Food Microbiol., 105, pp. 411-418
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: