Praziquantel in a clay nanoformulation shows more bioavailability and higher efficacy against murine Schistosoma mansoni infection

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorEl-Feky G.S.
dc.contributor.authorMohamed W.S.
dc.contributor.authorNasr H.E.
dc.contributor.authorEl-Lakkany N.M.
dc.contributor.authorSeifel-Din S.H.
dc.contributor.authorBotros S.S.
dc.contributor.otherDepartment of Pharmaceutics
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Sciences and Arts
dc.contributor.otherCairo
dc.contributor.otherEgypt; Department of Pharmaceutical Technology
dc.contributor.otherNational Research Center
dc.contributor.otherCairo
dc.contributor.otherEgypt; Department of Polymers and Pigments
dc.contributor.otherNational Research Center
dc.contributor.otherCairo
dc.contributor.otherEgypt; Department of Pharmacology
dc.contributor.otherTheodor Bilharz Research Institute
dc.contributor.otherGiza
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:41:50Z
dc.date.available2020-01-09T20:41:50Z
dc.date.issued2015
dc.descriptionScopus
dc.description.abstractConsideration of existing compounds always simplifies and shortens the long and difficult process of discovering new drugs specifically for diseases of developing countries, an approach that may add to the significant potential cost savings. This study focused on improving the biological characteristics of the already-existing antischistosomal praziquantel (PZQ) by incorporating it into montmorillonite (MMT) clay as a delivery carrier to overcome its known bioavailability drawbacks. The oral bioavailability of a PZQ-MMT clay nanoformulation and its in vivo efficacy against Schistosoma mansoni were investigated. The PZQ-MMT clay nanoformulation provided a preparation with a controlled release rate, a decrease in crystallinity, and an appreciable reduction in particle size. Uninfected and infected mice treated with PZQ-MMT clay showed 3.61- and 1.96-fold and 2.16- and 1.94-fold increases, respectively, in area under the concentration-time curve from 0 to 8 h (AUC<inf>0-8</inf>) and maximum concentration of drug in serum (C<inf>max</inf>), with a decrease in elimination rate constant (k<inf>el</inf>) by 2.84- and 1.35-fold and increases in the absorption rate constant (k<inf>a</inf>) and half-life (t<inf>1/2e</inf>) by 2.11- and 1.51-fold and 2.86- and 1.34-fold, respectively, versus the corresponding conventional PZQ-treated groups. This improved bioavailability has been expressed in higher efficacy of the drug, where the dose necessary to kill 50% of the worms was reduced by >3-fold (PZQ 50% effective dose [ED<inf>50</inf>] was 20.25 mg/kg of body weight for PZQ-MMT clay compared to 74.07 mg/kg for conventional PZQ), with significant reduction in total tissue egg load and increase in total immature, mature, and dead eggs in most of the drug-treated groups. This formulation showed better bioavailability, enhanced antischistosomal efficacy, and a safer profile despite the longer period of residence in the systemic circulation. Although the conventional drug's toxicity was not examined, animal mortality rates were not different between groups receiving the test PZQ-clay nanoformulation and conventional PZQ. Copyright 2015, American Society for Microbiology. All Rights Reserved.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=19615&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1128/AAC.04875-14
dc.identifier.doiPubMed ID 25845870
dc.identifier.issn664804
dc.identifier.otherhttps://doi.org/10.1128/AAC.04875-14
dc.identifier.otherPubMed ID 25845870
dc.identifier.urihttps://t.ly/b2jxG
dc.language.isoEnglishen_US
dc.publisherAmerican Society for Microbiologyen_US
dc.relation.ispartofseriesAntimicrobial Agents and Chemotherapy
dc.relation.ispartofseries59
dc.subjectcremophoren_US
dc.subjectmontmorilloniteen_US
dc.subjectpraziquantelen_US
dc.subjectanthelmintic agenten_US
dc.subjectpraziquantelen_US
dc.subjectanimal experimenten_US
dc.subjectanimal modelen_US
dc.subjectanimal tissueen_US
dc.subjectArticleen_US
dc.subjectclayen_US
dc.subjectcontrolled release formulationen_US
dc.subjectcontrolled studyen_US
dc.subjectdrug absorptionen_US
dc.subjectdrug bioavailabilityen_US
dc.subjectdrug efficacyen_US
dc.subjectdrug eliminationen_US
dc.subjectin vivo studyen_US
dc.subjectmouseen_US
dc.subjectnonhumanen_US
dc.subjectparticle sizeen_US
dc.subjectplasma concentration-time curveen_US
dc.subjectpriority journalen_US
dc.subjectschistosomiasis mansonien_US
dc.subjectanimalen_US
dc.subjectbioavailabilityen_US
dc.subjectdrug effectsen_US
dc.subjectmaleen_US
dc.subjectmetabolismen_US
dc.subjectpathogenicityen_US
dc.subjectSchistosoma mansonien_US
dc.subjectschistosomiasis mansonien_US
dc.subjectAnimalsen_US
dc.subjectAnthelminticsen_US
dc.subjectBiological Availabilityen_US
dc.subjectMaleen_US
dc.subjectMiceen_US
dc.subjectPraziquantelen_US
dc.subjectSchistosoma mansonien_US
dc.subjectSchistosomiasis mansonien_US
dc.titlePraziquantel in a clay nanoformulation shows more bioavailability and higher efficacy against murine Schistosoma mansoni infectionen_US
dc.typeArticleen_US
dcterms.isReferencedByWorld Health Organization, (2013) Schistosomiasis, , World Health Organization, Geneva, Switzerland; Meyer, T., Sekljic, H., Fuchs, S., Bothe, H., Schollmeyer, D., Miculka, C., Taste, a new incentive to switch to (R)-praziquantel in schistosomiasis treatment (2009) PLoS Negl Trop Dis, 3, p. e357. , http://dx.doi.org/10.1371/journal.pntd.0000357; Carabin, H., Guyatt, H., Engels, D., A comparative analysis of the cost-effectiveness of treatment based on parasitological and symptomatic screening for Schistosoma mansoni in Burundi (2000) Trop Med Int Health, 5, pp. 192-202. , http://dx.doi.org/10.1046/j.1365-3156.2000.00530.x; Akbarieh, M., Besner, J.G., Galal, A., Tawashi, R., Liposomal system for the targeting and controlled release of praziquantel (1992) Drug Dev Ind Pharm, 18, pp. 303-317. , http://dx.doi.org/10.3109/03639049209043701; El-Arini, S.K., Leuenberger, H., Dissolution properties of praziquantel-PVP systems (1998) Pharm Acta Helv, 73, pp. 89-94. , http://dx.doi.org/10.1016/S0031-6865(97)00051-4; Lindenberg, M., Kopp, S., Dressman, J.B., Classification of orally administered drugs on the World Health Organization model list of essential medicines according to the biopharmaceutics classification system (2004) Eur J Pharm Biopharm, 58, pp. 265-278. , http://dx.doi.org/10.1016/j.ejpb.2004.03.001; Mouro, S.C., Costa, P.I., Salgado, H.R.N., Gremio, M.P.D., Improvement of antischistosomal activity of praziquantel by incorporation into phosphatidylcholine-containing liposomes (2005) Int J Pharm, 295, pp. 157-162. , http://dx.doi.org/10.1016/j.ijpharm.2005.02.009; Xiao, S.H., Catto, B.A., Webster, L.T., Effects of praziquantel on different developmental stages of Schistosoma mansoni in vitro and in vivo (1985) J Infect Dis, 151, pp. 1130-1137. , http://dx.doi.org/10.1093/infdis/151.6.1130; Chai, J.Y., Praziquantel treatment in trematode and cestode infections: An update (2013) Infect Chemother, 45, pp. 32-43. , http://dx.doi.org/10.3947/ic.2013.45.1.32; Greenberg, R.M., New approaches for understanding mechanisms of drug resistance in schistosomes (2013) Parasitology, 140, pp. 1534-1546. , http://dx.doi.org/10.1017/S0031182013000231; Ridley, R.G., Product R&D for neglected diseases. Twenty-seven years of WHO/TDR experiences with public-private partnerships (2003) EMBO Rep, 4, pp. S43-S46. , http://dx.doi.org/10.1038/sj.embor.embor858; Wang, X., Du, Y., Luo, J., Biopolymer/montmorillonite nanocomposite: Preparation, drug-controlled release property and cytotoxicity (2008) Nanotechnology, 19, p. 065707. , http://dx.doi.org/10.1088/0957-4484/19/6/065707; Bergaya, F., Theng, B.K.G., Lagaly, G., (2006) Handbook of Clay Science, 1st Ed., , Elsevier Publications, Amsterdam, The Netherlands; Liang, Y.S., John, B.I., Boyd, D.A., Laboratory cultivation of schistosome vector snails and maintenance of schistosome life cycles (1987) Proc 1st Sino-Am Symp, 1, pp. 34-48; Gibaldi, M., Perrier, D., (1982) Pharmacokinetics. 2nd Ed., , Marcel Dekker Inc, New York, NY; Duvall, R.H., De Witt, W.B., Technique for recovering adult schistosomes from laboratory animals (1967) Am J Trop Med Hyg, 16, pp. 438-486; Cioli, D., Botros, S., Wheatcroft-Francklow, K., Mbaye, A., Southgate, V., Tchuente, L.A., Pica-Mattoccia, L., Doenhoff, M., Determination of ED50 values for praziquantel in praziquantel-resistant and susceptible Schistosoma mansoni isolates (2004) Int J Parasitol, 34, pp. 979-987. , http://dx.doi.org/10.1016/j.ijpara.2004.05.001; Cheever, A.W., Conditions affecting the accuracy of potassium hydroxide digestion techniques for counting Schistosoma mansoni eggs in tissues (1968) Bull World Health Organ, 39, pp. 328-331; Pellegrino, J., Oliveira, C.A., Faria, J., Cunha, A.S., New approach to the screening of drugs in experimental schistosomiasis mansoni in mice (1962) Am J Trop Med Hyg, 11, pp. 201-215; Patel, H.A., Somani, R.S., Bajaj, H.C., Jasra, R.V., Preparation and characterization of phosphonium montmorillonite with enhanced thermal stability (2007) Appl Clay Sci, 35, p. 194. , http://dx.doi.org/10.1016/j.clay.2006.09.012; Zheng, J.P., Luan, L., Wang, H.Y., Xi, L.F., Yao, K.D., Study on ibuprofen/montmorillonite intercalation composites as drug release system (2007) Appl Clay Sci, 36, p. 297. , http://dx.doi.org/10.1016/j.clay.2007.01.012; Hong, S.T., Lee, S.H., Lee, S.J., Kho, W.G., Lee, M., Li, S., Chung, B.S., Choi, M.H., Sustained-release praziquantel tablet: Pharmacokinetics and the treatment of clonorchiasis in beagle dogs (2003) Parasitol Res, 91, pp. 316-320. , http://dx.doi.org/10.1007/s00436-003-0958-7; Andrews, P., Dycka, J., Frank, G., Effect of praziquantel on clinical chemical parameters in healthy and schistosome-infected mice (1980) Ann Trop Med Parasitol, 74, pp. 167-177; Botros, S.S., Seif El-Din, S.H., El-Lakkany, N.M., Sabra, A.A., Ebeid, F.A., Drug metabolizing enzymes and praziquantel bioavailability in mice harboring Schistosoma mansoni isolates of different drug susceptibilities (2006) J Parasitol, 92, pp. 1344-1349. , http://dx.doi.org/10.1645/GE-865R.1; El-Guiniady, M.A., El-Touny, M.A., Abdel-Bary, M.A., Abdel-Fatah, S.A., Metwally, A.A., Clinical and pharmacokinetic study of praziquantel in Egyptian schistosomiasis patients with and without liver cell failure (1994) Am J Trop Med Hyg, 51, pp. 809-818; Brant, P.C., Prata, A., Altered drug metabolism in hepatosplenic schistosomiasis (1979) Rev Inst Med Trop Sao Paulo, 21, pp. 254-259; Tekwanl, B.L., Shukla, O.P., Ghatak, S., Altered drug metabolism in parasitic diseases (1988) Parasitol Today, 4, pp. 4-10. , http://dx.doi.org/10.1016/0169-4758(88)90047-6; Sheweita, S.A., Mangoura, S.A., El-Shemi, A.G., Different levels of Schistosoma mansoni infection induced changes in drug-metabolizing enzymes (1998) J Helminthol, 72, pp. 71-77. , http://dx.doi.org/10.1017/S0022149X00001012; Ebeid, F.A., Seif El-Din, S.H., Ezzat, A.R., Effect of Schistosoma mansoni infection and treatment on drug-metabolizing enzymes (2000) Arzneimittelforschung, 50, pp. 867-874; El-Lakkany, N.M., Seif El-Din, S.H., Badawy, A.A., Ebeid, F.A., Effect of artemether alone and in combination with grapefruit juice on hepatic drug-metabolizing enzymes and biochemical aspects in experimental Schistosoma mansoni (2004) Int J Parasitol, 34, pp. 1405-1412. , http://dx.doi.org/10.1016/j.ijpara.2004.08.012; Botros, S., El-Lakkany, N., Seif El-Din, S.H., Sabra, A., Ibrahim, M., Comparative efficacy and bioavailability of different praziquantel brands (2011) Exp Parasitol, 127, pp. 515-521. , http://dx.doi.org/10.1016/j.exppara.2010.10.019; Li, X.-Q., Bjorkman, A., Andersson, T.B., Gustafsson, L.L., Masimirembwa, C.M., Identification of human cytochrome P450s that metabolise anti-parasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data (2003) Eur J Clin Pharmacol, 59, pp. 429-442. , http://dx.doi.org/10.1007/s00228-003-0636-9; Becket, G., Schep, L.J., Tan, M.Y., Improvement of the in vitro dissolution of praziquantel by complexation with ?, ? and ? cyclodextrins (1999) Int J Pharm, 179, pp. 65-71. , http://dx.doi.org/10.1016/S0378-5173(98)00382-2; Gonnert, R., Andrews, P., Praziquantel, a new broad-spectrum antischistosomal agent (1977) Z Parasitenkd, 52, pp. 129-150. , http://dx.doi.org/10.1007/BF00389899; El-Lakkany, N., Seif El-Din, S.H., Heikal, L., Bioavailability and in vivo efficacy of a praziquantel-polyvinylpyrrolidone solid dispersion in Schistosoma mansoni-infected mice (2012) Eur J Drug Metab Pharmacokinet, 37, pp. 289-299. , http://dx.doi.org/10.1007/s13318-012-0089-6; Cohen-Sela, E., Dangoor, D., Epstein, H., Gati, I., Danenberg, H.D., Golomb, G., Gao, J., Nanospheres of a bisphosphonate attenuate intimal hyperplasia (2006) J Nanosci Nanotechnol, 6, pp. 3226-3234. , http://dx.doi.org/10.1166/jnn.2006.428; Mohanambe, L., Vasudevan, S., Anionic clays containing antiinflammatory drug molecules: Comparison of molecular dynamics simulation and measurements (2005) J Phys Chem B, 109, pp. 15651-15658. , http://dx.doi.org/10.1021/jp050480m; Lin, F.H., Lee, Y.H., Jian, C.H., Wong, J.M., Shieh, M.J., Wang, C.Y., A study of purified montmorillonite intercalated with 5-fluorouracil as drug carrier (2002) Biomaterials, 23, p. 1981. , http://dx.doi.org/10.1016/S0142-9612(01)00325-8
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
Praziquantel_in_a_Clay_Nanoformulation_Shows_More_.pdf
Size:
1.05 MB
Format:
Adobe Portable Document Format
Description: