Praziquantel in a clay nanoformulation shows more bioavailability and higher efficacy against murine Schistosoma mansoni infection
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | El-Feky G.S. | |
dc.contributor.author | Mohamed W.S. | |
dc.contributor.author | Nasr H.E. | |
dc.contributor.author | El-Lakkany N.M. | |
dc.contributor.author | Seifel-Din S.H. | |
dc.contributor.author | Botros S.S. | |
dc.contributor.other | Department of Pharmaceutics | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | October University for Modern Sciences and Arts | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Department of Pharmaceutical Technology | |
dc.contributor.other | National Research Center | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Department of Polymers and Pigments | |
dc.contributor.other | National Research Center | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Department of Pharmacology | |
dc.contributor.other | Theodor Bilharz Research Institute | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:41:50Z | |
dc.date.available | 2020-01-09T20:41:50Z | |
dc.date.issued | 2015 | |
dc.description | Scopus | |
dc.description.abstract | Consideration of existing compounds always simplifies and shortens the long and difficult process of discovering new drugs specifically for diseases of developing countries, an approach that may add to the significant potential cost savings. This study focused on improving the biological characteristics of the already-existing antischistosomal praziquantel (PZQ) by incorporating it into montmorillonite (MMT) clay as a delivery carrier to overcome its known bioavailability drawbacks. The oral bioavailability of a PZQ-MMT clay nanoformulation and its in vivo efficacy against Schistosoma mansoni were investigated. The PZQ-MMT clay nanoformulation provided a preparation with a controlled release rate, a decrease in crystallinity, and an appreciable reduction in particle size. Uninfected and infected mice treated with PZQ-MMT clay showed 3.61- and 1.96-fold and 2.16- and 1.94-fold increases, respectively, in area under the concentration-time curve from 0 to 8 h (AUC<inf>0-8</inf>) and maximum concentration of drug in serum (C<inf>max</inf>), with a decrease in elimination rate constant (k<inf>el</inf>) by 2.84- and 1.35-fold and increases in the absorption rate constant (k<inf>a</inf>) and half-life (t<inf>1/2e</inf>) by 2.11- and 1.51-fold and 2.86- and 1.34-fold, respectively, versus the corresponding conventional PZQ-treated groups. This improved bioavailability has been expressed in higher efficacy of the drug, where the dose necessary to kill 50% of the worms was reduced by >3-fold (PZQ 50% effective dose [ED<inf>50</inf>] was 20.25 mg/kg of body weight for PZQ-MMT clay compared to 74.07 mg/kg for conventional PZQ), with significant reduction in total tissue egg load and increase in total immature, mature, and dead eggs in most of the drug-treated groups. This formulation showed better bioavailability, enhanced antischistosomal efficacy, and a safer profile despite the longer period of residence in the systemic circulation. Although the conventional drug's toxicity was not examined, animal mortality rates were not different between groups receiving the test PZQ-clay nanoformulation and conventional PZQ. Copyright 2015, American Society for Microbiology. All Rights Reserved. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=19615&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1128/AAC.04875-14 | |
dc.identifier.doi | PubMed ID 25845870 | |
dc.identifier.issn | 664804 | |
dc.identifier.other | https://doi.org/10.1128/AAC.04875-14 | |
dc.identifier.other | PubMed ID 25845870 | |
dc.identifier.uri | https://t.ly/b2jxG | |
dc.language.iso | English | en_US |
dc.publisher | American Society for Microbiology | en_US |
dc.relation.ispartofseries | Antimicrobial Agents and Chemotherapy | |
dc.relation.ispartofseries | 59 | |
dc.subject | cremophor | en_US |
dc.subject | montmorillonite | en_US |
dc.subject | praziquantel | en_US |
dc.subject | anthelmintic agent | en_US |
dc.subject | praziquantel | en_US |
dc.subject | animal experiment | en_US |
dc.subject | animal model | en_US |
dc.subject | animal tissue | en_US |
dc.subject | Article | en_US |
dc.subject | clay | en_US |
dc.subject | controlled release formulation | en_US |
dc.subject | controlled study | en_US |
dc.subject | drug absorption | en_US |
dc.subject | drug bioavailability | en_US |
dc.subject | drug efficacy | en_US |
dc.subject | drug elimination | en_US |
dc.subject | in vivo study | en_US |
dc.subject | mouse | en_US |
dc.subject | nonhuman | en_US |
dc.subject | particle size | en_US |
dc.subject | plasma concentration-time curve | en_US |
dc.subject | priority journal | en_US |
dc.subject | schistosomiasis mansoni | en_US |
dc.subject | animal | en_US |
dc.subject | bioavailability | en_US |
dc.subject | drug effects | en_US |
dc.subject | male | en_US |
dc.subject | metabolism | en_US |
dc.subject | pathogenicity | en_US |
dc.subject | Schistosoma mansoni | en_US |
dc.subject | schistosomiasis mansoni | en_US |
dc.subject | Animals | en_US |
dc.subject | Anthelmintics | en_US |
dc.subject | Biological Availability | en_US |
dc.subject | Male | en_US |
dc.subject | Mice | en_US |
dc.subject | Praziquantel | en_US |
dc.subject | Schistosoma mansoni | en_US |
dc.subject | Schistosomiasis mansoni | en_US |
dc.title | Praziquantel in a clay nanoformulation shows more bioavailability and higher efficacy against murine Schistosoma mansoni infection | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | World Health Organization, (2013) Schistosomiasis, , World Health Organization, Geneva, Switzerland; Meyer, T., Sekljic, H., Fuchs, S., Bothe, H., Schollmeyer, D., Miculka, C., Taste, a new incentive to switch to (R)-praziquantel in schistosomiasis treatment (2009) PLoS Negl Trop Dis, 3, p. e357. , http://dx.doi.org/10.1371/journal.pntd.0000357; Carabin, H., Guyatt, H., Engels, D., A comparative analysis of the cost-effectiveness of treatment based on parasitological and symptomatic screening for Schistosoma mansoni in Burundi (2000) Trop Med Int Health, 5, pp. 192-202. , http://dx.doi.org/10.1046/j.1365-3156.2000.00530.x; Akbarieh, M., Besner, J.G., Galal, A., Tawashi, R., Liposomal system for the targeting and controlled release of praziquantel (1992) Drug Dev Ind Pharm, 18, pp. 303-317. , http://dx.doi.org/10.3109/03639049209043701; El-Arini, S.K., Leuenberger, H., Dissolution properties of praziquantel-PVP systems (1998) Pharm Acta Helv, 73, pp. 89-94. , http://dx.doi.org/10.1016/S0031-6865(97)00051-4; Lindenberg, M., Kopp, S., Dressman, J.B., Classification of orally administered drugs on the World Health Organization model list of essential medicines according to the biopharmaceutics classification system (2004) Eur J Pharm Biopharm, 58, pp. 265-278. , http://dx.doi.org/10.1016/j.ejpb.2004.03.001; Mouro, S.C., Costa, P.I., Salgado, H.R.N., Gremio, M.P.D., Improvement of antischistosomal activity of praziquantel by incorporation into phosphatidylcholine-containing liposomes (2005) Int J Pharm, 295, pp. 157-162. , http://dx.doi.org/10.1016/j.ijpharm.2005.02.009; Xiao, S.H., Catto, B.A., Webster, L.T., Effects of praziquantel on different developmental stages of Schistosoma mansoni in vitro and in vivo (1985) J Infect Dis, 151, pp. 1130-1137. , http://dx.doi.org/10.1093/infdis/151.6.1130; Chai, J.Y., Praziquantel treatment in trematode and cestode infections: An update (2013) Infect Chemother, 45, pp. 32-43. , http://dx.doi.org/10.3947/ic.2013.45.1.32; Greenberg, R.M., New approaches for understanding mechanisms of drug resistance in schistosomes (2013) Parasitology, 140, pp. 1534-1546. , http://dx.doi.org/10.1017/S0031182013000231; Ridley, R.G., Product R&D for neglected diseases. Twenty-seven years of WHO/TDR experiences with public-private partnerships (2003) EMBO Rep, 4, pp. S43-S46. , http://dx.doi.org/10.1038/sj.embor.embor858; Wang, X., Du, Y., Luo, J., Biopolymer/montmorillonite nanocomposite: Preparation, drug-controlled release property and cytotoxicity (2008) Nanotechnology, 19, p. 065707. , http://dx.doi.org/10.1088/0957-4484/19/6/065707; Bergaya, F., Theng, B.K.G., Lagaly, G., (2006) Handbook of Clay Science, 1st Ed., , Elsevier Publications, Amsterdam, The Netherlands; Liang, Y.S., John, B.I., Boyd, D.A., Laboratory cultivation of schistosome vector snails and maintenance of schistosome life cycles (1987) Proc 1st Sino-Am Symp, 1, pp. 34-48; Gibaldi, M., Perrier, D., (1982) Pharmacokinetics. 2nd Ed., , Marcel Dekker Inc, New York, NY; Duvall, R.H., De Witt, W.B., Technique for recovering adult schistosomes from laboratory animals (1967) Am J Trop Med Hyg, 16, pp. 438-486; Cioli, D., Botros, S., Wheatcroft-Francklow, K., Mbaye, A., Southgate, V., Tchuente, L.A., Pica-Mattoccia, L., Doenhoff, M., Determination of ED50 values for praziquantel in praziquantel-resistant and susceptible Schistosoma mansoni isolates (2004) Int J Parasitol, 34, pp. 979-987. , http://dx.doi.org/10.1016/j.ijpara.2004.05.001; Cheever, A.W., Conditions affecting the accuracy of potassium hydroxide digestion techniques for counting Schistosoma mansoni eggs in tissues (1968) Bull World Health Organ, 39, pp. 328-331; Pellegrino, J., Oliveira, C.A., Faria, J., Cunha, A.S., New approach to the screening of drugs in experimental schistosomiasis mansoni in mice (1962) Am J Trop Med Hyg, 11, pp. 201-215; Patel, H.A., Somani, R.S., Bajaj, H.C., Jasra, R.V., Preparation and characterization of phosphonium montmorillonite with enhanced thermal stability (2007) Appl Clay Sci, 35, p. 194. , http://dx.doi.org/10.1016/j.clay.2006.09.012; Zheng, J.P., Luan, L., Wang, H.Y., Xi, L.F., Yao, K.D., Study on ibuprofen/montmorillonite intercalation composites as drug release system (2007) Appl Clay Sci, 36, p. 297. , http://dx.doi.org/10.1016/j.clay.2007.01.012; Hong, S.T., Lee, S.H., Lee, S.J., Kho, W.G., Lee, M., Li, S., Chung, B.S., Choi, M.H., Sustained-release praziquantel tablet: Pharmacokinetics and the treatment of clonorchiasis in beagle dogs (2003) Parasitol Res, 91, pp. 316-320. , http://dx.doi.org/10.1007/s00436-003-0958-7; Andrews, P., Dycka, J., Frank, G., Effect of praziquantel on clinical chemical parameters in healthy and schistosome-infected mice (1980) Ann Trop Med Parasitol, 74, pp. 167-177; Botros, S.S., Seif El-Din, S.H., El-Lakkany, N.M., Sabra, A.A., Ebeid, F.A., Drug metabolizing enzymes and praziquantel bioavailability in mice harboring Schistosoma mansoni isolates of different drug susceptibilities (2006) J Parasitol, 92, pp. 1344-1349. , http://dx.doi.org/10.1645/GE-865R.1; El-Guiniady, M.A., El-Touny, M.A., Abdel-Bary, M.A., Abdel-Fatah, S.A., Metwally, A.A., Clinical and pharmacokinetic study of praziquantel in Egyptian schistosomiasis patients with and without liver cell failure (1994) Am J Trop Med Hyg, 51, pp. 809-818; Brant, P.C., Prata, A., Altered drug metabolism in hepatosplenic schistosomiasis (1979) Rev Inst Med Trop Sao Paulo, 21, pp. 254-259; Tekwanl, B.L., Shukla, O.P., Ghatak, S., Altered drug metabolism in parasitic diseases (1988) Parasitol Today, 4, pp. 4-10. , http://dx.doi.org/10.1016/0169-4758(88)90047-6; Sheweita, S.A., Mangoura, S.A., El-Shemi, A.G., Different levels of Schistosoma mansoni infection induced changes in drug-metabolizing enzymes (1998) J Helminthol, 72, pp. 71-77. , http://dx.doi.org/10.1017/S0022149X00001012; Ebeid, F.A., Seif El-Din, S.H., Ezzat, A.R., Effect of Schistosoma mansoni infection and treatment on drug-metabolizing enzymes (2000) Arzneimittelforschung, 50, pp. 867-874; El-Lakkany, N.M., Seif El-Din, S.H., Badawy, A.A., Ebeid, F.A., Effect of artemether alone and in combination with grapefruit juice on hepatic drug-metabolizing enzymes and biochemical aspects in experimental Schistosoma mansoni (2004) Int J Parasitol, 34, pp. 1405-1412. , http://dx.doi.org/10.1016/j.ijpara.2004.08.012; Botros, S., El-Lakkany, N., Seif El-Din, S.H., Sabra, A., Ibrahim, M., Comparative efficacy and bioavailability of different praziquantel brands (2011) Exp Parasitol, 127, pp. 515-521. , http://dx.doi.org/10.1016/j.exppara.2010.10.019; Li, X.-Q., Bjorkman, A., Andersson, T.B., Gustafsson, L.L., Masimirembwa, C.M., Identification of human cytochrome P450s that metabolise anti-parasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data (2003) Eur J Clin Pharmacol, 59, pp. 429-442. , http://dx.doi.org/10.1007/s00228-003-0636-9; Becket, G., Schep, L.J., Tan, M.Y., Improvement of the in vitro dissolution of praziquantel by complexation with ?, ? and ? cyclodextrins (1999) Int J Pharm, 179, pp. 65-71. , http://dx.doi.org/10.1016/S0378-5173(98)00382-2; Gonnert, R., Andrews, P., Praziquantel, a new broad-spectrum antischistosomal agent (1977) Z Parasitenkd, 52, pp. 129-150. , http://dx.doi.org/10.1007/BF00389899; El-Lakkany, N., Seif El-Din, S.H., Heikal, L., Bioavailability and in vivo efficacy of a praziquantel-polyvinylpyrrolidone solid dispersion in Schistosoma mansoni-infected mice (2012) Eur J Drug Metab Pharmacokinet, 37, pp. 289-299. , http://dx.doi.org/10.1007/s13318-012-0089-6; Cohen-Sela, E., Dangoor, D., Epstein, H., Gati, I., Danenberg, H.D., Golomb, G., Gao, J., Nanospheres of a bisphosphonate attenuate intimal hyperplasia (2006) J Nanosci Nanotechnol, 6, pp. 3226-3234. , http://dx.doi.org/10.1166/jnn.2006.428; Mohanambe, L., Vasudevan, S., Anionic clays containing antiinflammatory drug molecules: Comparison of molecular dynamics simulation and measurements (2005) J Phys Chem B, 109, pp. 15651-15658. , http://dx.doi.org/10.1021/jp050480m; Lin, F.H., Lee, Y.H., Jian, C.H., Wong, J.M., Shieh, M.J., Wang, C.Y., A study of purified montmorillonite intercalated with 5-fluorouracil as drug carrier (2002) Biomaterials, 23, p. 1981. , http://dx.doi.org/10.1016/S0142-9612(01)00325-8 | |
dcterms.source | Scopus |