Enhanced wound healing activity of desert locust (Schistocerca gregaria) vs. shrimp (Penaeus monodon) chitosan based scaffolds

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorMarei N.H.
dc.contributor.authorEl-Mazny W.
dc.contributor.authorEl-Shaer A.
dc.contributor.authorZaki K.D.
dc.contributor.authorHussein Z.S.
dc.contributor.authorAbd-El-Samie E.M.
dc.contributor.otherNanotechnology Program
dc.contributor.otherSchool of Sciences and Engineering
dc.contributor.otherAmerican University in CairoNew Cairo
dc.contributor.otherEgypt; Research and Development Unit
dc.contributor.otherHolding Company for Biological products and Vaccines-VACSERA
dc.contributor.otherGiza
dc.contributor.otherEgypt; Biotechnology Program
dc.contributor.otherFaculty of Sciences
dc.contributor.otherCairo University
dc.contributor.otherGiza
dc.contributor.otherEgypt; Faculty of Biotechnology
dc.contributor.otherModern Sciences and Arts University
dc.contributor.other6th of October
dc.contributor.otherEgypt; Entomology Department
dc.contributor.otherFaculty of Sciences
dc.contributor.otherCairo University
dc.contributor.otherGiza
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:41:21Z
dc.date.available2020-01-09T20:41:21Z
dc.date.issued2017
dc.descriptionScopus
dc.description.abstractChitosan (CS) has received great attention in tissue engineering, especially in wound healing acceleration. In this study, chitin was isolated from desert locust (Schistocerca gregaria) and shrimp (Penaeus monodon) then deacetylated to chitosan. Then, chitosan was characterized by degree of deacetylation (DD), molecular weight (M.Wt), swelling index (SI), Fourier transform infrared (FTIR) and X ray diffraction (XRD). The chitosan was then casted into 2D scaffolds and was pictured using scanning electron microscope (SEM). In a comparative study, primary cell cultures of neonatal (1�2�day old) mice skin tissue, supplemented with 10% fetal calf serum, were seeded onto locust chitosan based scaffolds (LCSBS) and shrimp chitosan based scaffold (SCSBS). Their attachment percentage was determined after 1�h. The cell proliferation rate was tested for 5�days on LCSBS and SCSBS. Wound healing activity progress of LCSBS and SCSBS was tested in vivo using histopathology, and results revealed that seeded and unseeded LCSBS accelerated healing in contrast to SCSBS. The data demonstrated that LCSBS shows a high degree of biocompatibility in vivo. These results suggest that LCSBS is a potential substitute for the development of low cost implantable materials to accelerate wound healing. � 2017 Elsevier B.V.en_US
dc.identifier.doihttps://doi.org/10.1016/j.ijbiomac.2017.01.009
dc.identifier.doiPubMedID28062236
dc.identifier.issn1418130
dc.identifier.otherhttps://doi.org/10.1016/j.ijbiomac.2017.01.009
dc.identifier.otherPubMedID28062236
dc.identifier.urihttps://t.ly/XAAVL
dc.language.isoEnglishen_US
dc.publisherElsevier B.V.en_US
dc.relation.ispartofseriesInternational Journal of Biological Macromolecules
dc.relation.ispartofseries97
dc.subjectOctober University for Modern Sciences and Arts
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectUniversity of Modern Sciences and Arts
dc.subjectMSA University
dc.subjectChitosanen_US
dc.subjectTissue engineeringen_US
dc.subjectWound healingen_US
dc.subjectchitinen_US
dc.subjectchitosanen_US
dc.subjectchitosanen_US
dc.subjectanalytical parametersen_US
dc.subjectanimal cellen_US
dc.subjectanimal experimenten_US
dc.subjectanimal modelen_US
dc.subjectanimal tissueen_US
dc.subjectArticleen_US
dc.subjectBagg albino mouseen_US
dc.subjectbiocompatibilityen_US
dc.subjectcell adhesionen_US
dc.subjectcell proliferationen_US
dc.subjectcomparative studyen_US
dc.subjectcontrolled studyen_US
dc.subjectdeacetylationen_US
dc.subjectelasticityen_US
dc.subjectfibroblasten_US
dc.subjecthistopathologyen_US
dc.subjectin vitro studyen_US
dc.subjectin vivo studyen_US
dc.subjectinfrared spectroscopyen_US
dc.subjectlocust chitosan based scaffolden_US
dc.subjectmaleen_US
dc.subjectmolecular weighten_US
dc.subjectmouseen_US
dc.subjectnewbornen_US
dc.subjectnonhumanen_US
dc.subjectPenaeus monodonen_US
dc.subjectphysical chemistryen_US
dc.subjectscanning electron microscopyen_US
dc.subjectSchistocerca gregariaen_US
dc.subjectshrimp chitosan based scaffolden_US
dc.subjectswelling indexen_US
dc.subjecttissue engineeringen_US
dc.subjecttissue scaffolden_US
dc.subjectviscosityen_US
dc.subjectwound healingen_US
dc.subjectX ray diffractionen_US
dc.subjectanimalen_US
dc.subjectCaeliferaen_US
dc.subjectchemistryen_US
dc.subjectcytologyen_US
dc.subjectdrug effectsen_US
dc.subjectPenaeidaeen_US
dc.subjectporosityen_US
dc.subjectskinen_US
dc.subjecttissue scaffolden_US
dc.subjectwound healingen_US
dc.subjectAnimalsen_US
dc.subjectCell Adhesionen_US
dc.subjectCell Proliferationen_US
dc.subjectChitosanen_US
dc.subjectGrasshoppersen_US
dc.subjectMiceen_US
dc.subjectPenaeidaeen_US
dc.subjectPorosityen_US
dc.subjectSkinen_US
dc.subjectTissue Scaffoldsen_US
dc.subjectWound Healingen_US
dc.titleEnhanced wound healing activity of desert locust (Schistocerca gregaria) vs. shrimp (Penaeus monodon) chitosan based scaffoldsen_US
dc.typeArticleen_US
dcterms.isReferencedByMetcalfe, A.D., Ferguson, M.W., Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration (2007) J. R. Soc. Interface, 4 (14), pp. 413-437; Diegelmann, R.F., Evans, M.C., Wound healing: an overview of acute, fibrotic and delayed healing (2004) Front. Biosci., 9 (1), pp. 283-289; Strehin, I., Nahas, Z., Rich, M., Marti, G., Zhang, X., Harmon, J., Elisseeff, J., A bioadhesive and bacteriostatic chondroitin sulfate-polyethylene glycol hydrogel dressing improves survival and rate of wound closure in a mouse model, wound repair and regeneration (2011) Wound Repair Regen., 19 (2), p. A54; Lim, H.-J., Kim, H.-T., Oh, E.-J., Choi, J.-H., Ghim, H.-D., Pyun, D.-G., Lee, S.-B., Chung, H.-Y., Effect of newly developed pectin/CMC dressing materials on three different types of wound model (2010) Korea Polym. J., 34 (4), pp. 363-368; Spiess, K., Lammel, A., Scheibel, T., Recombinant spider silk proteins for applications in biomaterials (2010) Macromol. Biosci., 10 (9), pp. 998-1007; Mogo?anu, G.D., Grumezescu, A.M., Natural and synthetic polymers for wounds and burns dressing (2014) Int. J. Pharm., 463 (2), pp. 127-136; Konrad, D., Tsunoda, M., Weber, K., Corney, S., Ullmann, L., Effects of a topical silver sulfadiazine polyurethane dressing (Mikacure) on wound healing in experimentally infected wounds in the pig. A pilot study (2002) J. Exp. Anim. Sci., 42 (1), pp. 31-43; Wyatt, D., Mcgowan, D.N., Najarian, M.P., Comparison of a hydrocolloid dressing and silver sulfadiazine cream in the outpatient management of second-degree burns (1990) J. Trauma Acute Care Surg., 30 (7), pp. 857-865; Gil, E.S., Panilaitis, B., Bellas, E., Kaplan, D.L., Functionalized silk biomaterials for wound healing (2013) Adv. Healthcare Mater., 2 (1), pp. 206-217; Powell, H.M., Supp, D.M., Boyce, S.T., Influence of electrospun collagen on wound contraction of engineered skin substitutes (2008) Biomaterials, 29 (7), pp. 834-843; Ong, S.-Y., Wu, J., Moochhala, S.M., Tan, M.-H., Lu, J., Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties (2008) Biomaterials, 29 (32), pp. 4323-4332; Uppal, R., Ramaswamy, G.N., Arnold, C., Goodband, R., Wang, Y., Hyaluronic acid nanofiber wound dressing�production, characterization, and in vivo behavior (2011) J. Biomed. Mater. Res. B Appl. Biomater., 97 (1), pp. 20-29; Majt�n, J., B�likov�, K., Markovi?, O., Gr�f, J., Kogan, G., �im�th, J., Isolation and characterization of chitin from bumblebee (Bombus terrestris) (2007) Int. J. Biol. Macromol., 40 (3), pp. 237-241; Neville, A., Parry, D., Woodhead-Galloway, J., The chitin crystallite in arthropod cuticle (1976) J. Cell Sci., 21 (1), pp. 73-82; Showler, A.T., Locust (Orthoptera: Acrididae) outbreak in Africa and Asia, 1992�1994: an overview (1995) Am. Entomol., 41 (3), pp. 179-185; Pener, M., Yerushalmi, Y., The physiology of locust phase polymorphism: an update (1998) J. Insect Physiol., 44 (5), pp. 365-377; Kumar, M.R., Muzzarelli, R.A., Muzzarelli, C., Sashiwa, H., Domb, A., Chitosan chemistry and pharmaceutical perspectives (2004) Chem. Rev., 104 (12), pp. 6017-6084; Wiegand, C., Winter, D., Hipler, U.-C., Molecular-weight-dependent toxic effects of chitosans on the human keratinocyte cell line HaCaT (2010) Skin Pharmacol. Physiol., 23 (3), pp. 164-170; Duarte, A.R.C., Mano, J.F., Reis, R.L., The role of organic solvent on the preparation of chitosan scaffolds by supercritical assisted phase inversion (2012) J. Supercrit. Fluids, 72, pp. 326-332; Cardea, S., Pisanti, P., Reverchon, E., Generation of chitosan nanoporous structures for tissue engineering applications using a supercritical fluid assisted process (2010) J. Supercrit. Fluids, 54 (3), pp. 290-295; Shigemasa, Y., Minami, S., Applications of chitin and chitosan for biomaterials (1996) Biotechnol. Genet. Eng. Rev., 13 (1), pp. 383-420; Jayakumar, R., Prabaharan, M., Kumar, P.S., Nair, S., Tamura, H., Biomaterials based on chitin and chitosan in wound dressing applications (2011) Biotechnol. Adv., 29 (3), pp. 322-337; Marei, N.H., El-Samie, E.A., Salah, T., Saad, G.R., Elwahy, A.H., Isolation and characterization of chitosan from different local insects in Egypt (2016) Int. J. Biol. Macromol., 82, pp. 871-877; Wilt, F.H., Ettensohn, C.A., The morphogenesis and biomineralization of the sea urchin larval skeleton (2007) Handbook of Biomineralization: Biological Aspects and Structure Formation, pp. 182-210. , first ed. Wiley Sons New York; Abdou, E.S., Nagy, K.S., Elsabee, M.Z., Extraction and characterization of chitin and chitosan from local sources (2008) Bioresour. Technol., 99 (5), pp. 1359-1367; Xie, H., Zhang, S., Li, S., Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO2 (2006) Green Chem., 8 (7), pp. 630-633; Felt, O., Furrer, P., Mayer, J., Plazonnet, B., Buri, P., Gurny, R., Topical use of chitosan in ophthalmology: tolerance assessment and evaluation of precorneal retention (1999) Int. J. Pharm., 180 (2), pp. 185-193; Hwang, K.T., Kim, J.T., Jung, S.T., Cho, G.S., Park, H.J., Properties of chitosan?based biopolymer films with various degrees of deacetylation and molecular weights (2003) J. Appl. Polym. Sci., 89 (13), pp. 3476-3484; Seluanov, A., Vaidya, A., Gorbunova, V., Establishing primary adult fibroblast cultures from rodents (2010) J. Vis. Exp., 44; Lam, T., Linnes, M., Giachelli, C., Ratner, B.D., Mechanical testing and optimizing cell seeding on porous fibrin scaffolds (2007) J. Undergrad. Res. Bioeng., 7 (1), pp. 22-28; Senthilraja, P., Kathiresan, K., In vitro cytotoxicity MTT assay in Vero, HepG2 and MCF-7 cell lines study of Marine Yeast (2015) J. App. Pharm. Sci., 5 (3), pp. 80-84; Zahedi, P., Rezaeian, I., Jafari, S.H., In vitro and in vivo evaluations of phenytoin sodium-loaded electrospun PVA, PCL, and their hybrid nanofibrous mats for use as active wound dressings (2013) J. Mater. Sci., 48 (8), pp. 3147-3159; Zhang, M., Haga, A., Sekiguchi, H., Hirano, S., Structure of insect chitin isolated from beetle larva cuticle and silkworm (Bombyx mori) pupa exuvia (2000) Int. J. Biol. Macromol., 27 (1), pp. 99-105; Teng, W.L., Khor, E., Tan, T.K., Lim, L.Y., Tan, S.C., Concurrent production of chitin from shrimp shells and fungi (2001) Carbohydr. Res., 332 (3), pp. 305-316; Nemtsev, S., Zueva, O.Y., Khismatullin, M., Albulov, A., Varlamov, V., Isolation of chitin and chitosan from honeybees (2004) Appl. Biochem. Microbiol., 40 (1), pp. 39-43; Kramer, E.J., Green, P., Palmstr�m, C.J., Interdiffusion and marker movements in concentrated polymer�polymer diffusion couples (1984) Polymer, 25 (4), pp. 473-480; Wenling, C., Duohui, J., Jiamou, L., Yandao, G., Nanming, Z., Xiufang, Z., Effects of the degree of deacetylation on the physicochemical properties and Schwann cell affinity of chitosan films (2005) J. Biomater. Appl., 20 (2), pp. 157-177; Taghizadeh, S., Davari, G., Preparation, characterization, and swelling behavior of N-acetylated and deacetylated chitosans (2006) Carbohydr. Polym., 64 (1), pp. 9-15; Wan, Y., Creber, K.A., Peppley, B., Bui, V.T., Ionic conductivity of chitosan membranes (2003) Polymer, 44 (4), pp. 1057-1065; Hamilton, V., Yuan, Y., Rigney, D.A., Puckett, A.D., Ong, J.L., Yang, Y., Elder, S.H., Bumgardner, J.D., Characterization of chitosan films and effects on fibroblast cell attachment and proliferation (2006) J. Mater. Sci.: Mater. Med., 17 (12), pp. 1373-1381; Kaya, M., Baran, T., Erdo?an, S., Mente?, A., A?an �z�sa?lam, M., �akmak, Y.S., Physicochemical comparison of chitin and chitosan obtained from larvae and adult Colorado potato beetle (Leptinotarsa decemlineata) (2014) Mater. Sci. Eng.: C., 45, pp. 72-81; Kaya, M., Ba?r?a�?k, N., Seyyar, O., Baran, T., Comparison of chitin structures derived from three common wasp species (Vespa crabro Linnaeus, 1758, Vespa orientalis Linnaeus, 1771 and Vespula germanica (Fabricius, 1793)) (2015) Insect Biochem. Physiol., 89 (4), pp. 204-217; Kaya, M., Hal?c?, M.G., Duman, F., Erdo?an, S., Baran, T., Characterisation of ?-chitin extracted from a lichenised fungus species Xanthoria parietina (2015) Nat. Prod. Res., 29 (13), pp. 1280-1284; Kaya, M., Karaarslan, M., Baran, T., Can, E., Ekemen, G., Bitim, B., Duman, F., The quick extraction of chitin from an epizoic crustacean species (Chelonibia patula) (2014) Nat. Prod. Res., 28 (23), pp. 2186-2190; Kaya, M., Baran, T., Saman, I., Ozusaglam, M.A., Cakmak, Y.S., Mente?, A., Physicochemical characterization of chitin and chitosan obtained from resting eggs of Ceriodaphnia quadrangula (Branchiopoda: Cladocera: Daphniidae) (2014) J. Crustacean Biol., 34 (2), pp. 283-288; Kaya, M., Tozak, K.�., Baran, T., Sezen, G., Sargin, I., Natural porous and nano fiber chitin structure from Gammarus argaeus (Gammaridae Crustacea) (2013) EXCLI J., 12, pp. 503-510; Chatterjee, S., Adhya, M., Guha, A., Chatterjee, B., Chitosan from Mucor rouxii: production and physico-chemical characterization (2005) Process Biochem., 40 (1), pp. 395-400; Jayakumar, R., Prabaharan, M., Reis, R., Mano, J., Graft copolymerized chitosan�present status and applications (2005) Carbohydr. Polym., 62 (2), pp. 142-158; Wang, Y., Chang, Y., Yu, L., Zhang, C., Xu, X., Xue, Y., Li, Z., Xue, C., Crystalline structure and thermal property characterization of chitin from Antarctic krill (Euphausia superba) (2013) Carbohydr. Polym., 92 (1), pp. 90-97; Yen, M.-T., Yang, J.-H., Mau, J.-L., Physicochemical characterization of chitin and chitosan from crab shells (2009) Carbohydr. Polym., 75 (1), pp. 15-21; Sajomsang, W., Gonil, P., Preparation and characterization of ?-chitin from cicada sloughs (2010) Mater. Sci. Eng. C, 30 (3), pp. 357-363; Kaya, M., Baran, T., Asan-Ozusaglam, M., Cakmak, Y.S., Tozak, K.O., Mol, A., Mentes, A., Sezen, G., Extraction and characterization of chitin and chitosan with antimicrobial and antioxidant activities from cosmopolitan Orthoptera species (Insecta) (2015) Biotechnol. Bioprocess Eng., 20 (1), pp. 168-179; Ifuku, S., Nomura, R., Morimoto, M., Saimoto, H., Preparation of chitin nanofibers from mushrooms (2011) Materials, 4 (8), pp. 1417-1425; Kaya, M., Cakmak, Y.S., Baran, T., Asan-Ozusaglam, M., Mentes, A., Tozak, K.O., New chitin, chitosan, and O-carboxymethyl chitosan sources from resting eggs of Daphnia longispina (Crustacea); with physicochemical characterization, and antimicrobial and antioxidant activities (2014) Biotechnol. Bioprocess. Eng., 19 (1), pp. 58-69; AbdElhady, M., Preparation and characterization of chitosan/zinc oxide nanoparticles for imparting antimicrobial and UV protection to cotton fabric (2012) Int. J. Carbohydr. Chem., pp. 1-6; Li, L.-H., Deng, J.-C., Deng, H.-R., Liu, Z.-L., Xin, L., Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes (2010) Carbohydr. Res., 345 (8), pp. 994-998; Himes, V.B., Hu, W.S., Attachment and growth of mammalian cells on microcarriers with different ion exchange capacities (1987) Biotechnol. Bioeng., 29 (9), pp. 1155-1163; Ng, K.W., Khor, H.L., Hutmacher, D., In vitro characterization of natural and synthetic dermal matrices cultured with human dermal fibroblasts (2004) Biomaterials, 25 (14), pp. 2807-2818; Ranucci, C.S., Moghe, P.V., Substrate microtopography can enhance cell adhesive and migratory responsiveness to matrix ligand density (2001) J. Biomed. Mater. Res., 54 (2), pp. 149-161; Ponsonnet, L., Comte, V., Othmane, A., Lagneau, C., Charbonnier, M., Lissac, M., Jaffrezic, N., Effect of surface topography and chemistry on adhesion, orientation and growth of fibroblasts on nickel-titanium substrates (2002) Mater. Sci. Eng.: C., 21 (1), pp. 157-165; Deutsch, J., Motlagh, D., Russell, B., Desai, T.A., Fabrication of microtextured membranes for cardiac myocyte attachment and orientation (2000) J. Biomed. Mater. Res., 53 (3), pp. 267-275; Methacanon, P., Prasitsilp, M., Pothsree, T., Pattaraarchachai, J., Heterogeneous N-deacetylation of squid chitin in alkaline solution (2003) Carbohydr. Polym., 52 (2), pp. 119-123; Junqueira, L.C., Carneiro, J., Basic Histology Text and Atlas (2005), McGraw Hill London; Kim, K.S., Lee, J.Y., Kang, Y.M., Kim, E.S., Kim, G.H., Dal Rhee, S., Cheon, H.G., Lee, H.B., Small intestine submucosa sponge for in vivo support of tissue-engineered bone formation in the presence of rat bone marrow stem cells (2010) Biomaterials, 31 (6), pp. 1104-1113; Kim, K.S., Lee, J.Y., Kang, Y.M., Kim, E.S., Lee, B., Chun, H.J., Kim, J.H., Kim, M.S., Electrostatic crosslinked in Situ�forming in vivo scaffold for rat bone marrow mesenchymal stem cells (2009) Tissue Eng. A, 15 (10), pp. 3201-3209; Ahn, H.H., Kim, K.S., Lee, J.H., Lee, J.Y., Kim, B.S., Lee, I.W., Chun, H.J., Kim, M.S., In vivo osteogenic differentiation of human adipose-derived stem cells in an injectable in situ�forming gel scaffold (2009) Tissue Eng. A, 15 (7), pp. 1821-1832; Leibovich, S., Promotion of wound repair in mice by application of glucan (1980) J. Reticuloendothel. Soc., 27, pp. 1-11; Browder, W., Williams, D., Lucore, P., Pretus, H., Jones, E., McNamee, R., Effect of enhanced macrophage function on early wound healing (1988) Surgery, 104 (2), pp. 224-230; Ueno, H., Yamada, H., Tanaka, I., Kaba, N., Matsuura, M., Okumura, M., Kadosawa, T., Fujinaga, T., Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs (1999) Biomaterials, 20 (15), pp. 1407-1414; Azuma, K., Izumi, R., Osaki, T., Ifuku, S., Morimoto, M., Saimoto, H., Minami, S., Okamoto, Y., Chitin, chitosan, and its derivatives for wound healing: old and new materials (2015) J. Funct. Biomater., 6 (1), pp. 104-142; Muzzarelli, R.A., Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone (2009) Carbohydr. Polym., 76 (2), pp. 167-182; Brychta, P., Adler, J., ?ihov�, H., Such�nek, I., Kaloudov�, Y., Koupil, J., Cultured epidermal allografts: quantitative evaluation of their healing effect in deep dermal burns (2002) Cell Tissue Bank., 3 (1), pp. 15-23; Wu, Z., Ding, Y., Zhang, L., Zhong, S., Jiang, T., Primary grafting research of tissue engineered oral mucosa lamina propria on skin full thickness wounds (2006) Chin. J. Repara. Recons. Surg., 20 (2), pp. 172-176; Tvl, H.B., Vidyavathi, M., Kavitha, K., Sastry, T., RV, S.K., Preparation and evaluation of ciprofloxacin loaded chitosan-gelatin composite films for wound healing activity (2010) Int. J. Drug Deliv., 2 (2)
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: