Isolation of New Cytotoxic Metabolites from Cleome droserifolia Growing in Egypt

Abstract

The sulforhodamine B (SRB) assay was used to assess the cytotoxicity of the aqueous (AqEx) and ethanolic (AlEx) extracts, respectively, of the aerial parts of Cleome droserifolia (Forssk.) Del. against two human cancer cell lines, breast (MCF7) and colon (HCT116) adenocarcinoma. AqEx exhibited higher cytotoxic activity, thus its four subfractions, namely n-hexane (HxFr), chloroform (ClFr), ethyl acetate (EtFr), and n-butanol (BuFr) fractions, were also tested. Purifi cation of the more active ClFr and EtFr yielded nine compounds. Six terpenoids, guai-7(11),8-diene (C1), 1-hydroxy-guai-3,10(14)-diene (C2), 18-hydroxydollabela- 8(17)-ene (C3), (24E)-stigmasta-5,8-dien-3β-ol (C4), teucladiol [1α,5β-guai-10(14)- ene-4β,6β-diol] (C5), and buchariol (4,10-epoxy-6α-hydroxyguaiane) (C6), were isolated from ClFr and three fl avonol glycosides, isorhamnetin-3-O-β-D-glucoside (F1), quercetin- 3`-methoxy-3-O-(4``-acetylrhamnoside)-7-O-α-rhamnoside (F2), and kaempferol-4`-methoxy- 3,7-O-dirhamnoside (F3), were isolated from EtFr. Compounds C3 and F2 are new in nature. The isolated compounds were identifi ed using various spectroscopic methods (UV, IR, 1H NMR,13C NMR, HMQC, HMBC, and COSY). Compounds C1, C3, F2, and F3 showed signifi cant cytotoxic activities against the two tested cell lines comparable to those of the anticancer drug doxorubicin®. The new compound C3 was the most active as it had the lowest IC50 values, (1.9  0.08) and (1.6  0.09) μg/ml corresponding to 6.5 and 5.4 μM, against MCF7 and HCT116 cells, respectively.

Description

MSA Google Scholar

Keywords

University of Cleome droserifolia

Citation

Abdel-Hady N. M. (1998), Pharmacognostical investigation and biological verifi cation of some recipes and preparations of natural origin for the treatment of diabetes. MS Thesis. Faculty of Pharmacy (Girls), Al- Azhar University, Cairo, Egypt. Abdel-Kader M. S., Al-Qasoumi S. I., and AL-Taweel A. M. (2009), Hepatoprotective constituents from Cleome droserifolia. Chem. Pharm. Bull. 57, 620 – 624. Abdel-Kawy M. A., El-Deib S., El-Khyat Z., and Mikhail Y. A. (2000), Chemical and biological studies of Cleome droserifolia (Forssk.) Del. Part-I. Egypt. J. Biomed. Sci. 6, 204 – 218. Aboushoer M. I., Fathy H. M., Abdel-Kader M. S., Goetz G., and Omar A. A. (2010), Terpenes and fl avonoids from an Egyptian collection of Cleome droserifolia. Nat. Prod. Res. 24, 687 – 696. Ahmad V. U., Zahid M., Ali M. S., Jassbi A. R., Abbas M., Ali Z., and Iqbal M. Z. (1999), Bucharioside and buchariol from Salvia bucharia. Phytochemistry 52, 1319 – 1322. Bohlmann F. and Jakupovic J. (1979), Neue Labdan-Derivate und Sesquiterpene aus Silphium Arten. Phytochemistry 18, 1987 – 1992. Boik J. (2001), Natural Compounds in Cancer Therapy. Oregon Medical Press, Princeton, MN, USA, p. 25. Boulos L. (1999), Flora of Egypt, Vol. 1. Al-Hadara Publishing, Cairo, Egypt, pp. 177 – 179. Bruno M., De La Torre M., Rodriguez B., and Omar A. (1993), Guaiane sesquiterpenes from Teucrium leuococladum. Phyochemistry 34, 245 – 247. Cardellina II J. H., Fuller R. W., Gamble W. R., Westergaard C., Boswell J., Munro M. H. G., Currens M., and Boyd M. R. (1999), Evolving strategies for the selection, dereplication and prioritization of antitumor and HIV-inhibitory natural products extracts. In: Bioassay Methods in Natural Product Research and Development (Bohlin L. and Bruhn J. G., eds.). Kluwer Academic Publishers, Dordrecht, pp. 25 – 36. El-Askary H. I. (2005), Terpenoids from Cleome droserifolia (Forssk.) Del. Molecules 10, 971 – 977. Etkin N. L. (1981), A hausa herbal pharmacopoeia: Biomedical evaluation of commonly used plant medicines. J. Ethnopharmacol. 4, 75 – 98. Good J. L. and Akisha T. (1997), Analysis of Sterols, 1st ed. Blackie Academic and Professional Press, Chapman and Hall, London. Halim A. F., Saad H. A., and Hashish N. E. (1995), Flavonol glycosides from Nitraria retusa. Phytochemistry 40, 349 – 351. Medina E. J., Lora A. G., Paco L., Algarra I., Collado A., and Garrido F. (2006), A new extract of the plant Calendula offi cinalis produces a dual in-vitro effect: cytotoxic anti-tumor activity and lymphocyte activation. BMC Cancer 6, 119 – 122. Motaal A. A., Ezzat S. M., and Haddad P. S. (2011), Determination of bioactive markers in Cleome droserifolia using cell-based bioassays for antidiabetic activity and isolation of two novel active compounds. Phytomedicine 19, 38 – 41. Nassar M. I. and Gamal-Eldeen A. M. (2003), Potential antioxidant activity of fl avonoids from Hypericum triquetrifolium Turra and Cleome droserifolia (Forssk.) Del. Bull. Fac. Pharm. Cairo Univ. 41, 107 – 115. Nicola W. G., Ibrahim K. M., Mikhail T. H., Girgis R. B., and Khadr M. E. (1996), Role of the hypoglycemic plant extract Cleome droserifolia in improving glucose and lipid metabolism and its relation to insulin resistance in fatty liver. Bull. Chim. Farm. 135, 507 – 517. Oshima Y., Iwakawa T., and Hikino H. (1983), Alismol and alismoxide, sesquiterpenoids of Alisma rhizomes. Phytochemistry 22, 183 – 185. Skehan P., Storeng R., Scudiero D., Monks A., McMahon J., Vistica D., Warren J. T., Bokesch H., Kenney S., and Boyd M. R. (1990), New colorimetric cytotoxicity assay for cytotoxic-drug screening. J. Natl. Canc. Inst. 82, 1107 – 1112. WHO (2003), Diet, Nutrition and the Prevention of Chronic Diseases. Technical Report Series, 916. World Health Organization, Geneva. Yang S. S., Mabry T. J., El-Fishawy A. M., El-Kashoury E. A., Abdel-Kawy M. A., and Soliman F. M. (1990) Flavonoids of Cleome droserifolia (Forssk.) Del. Egypt. J. Pharm. Sci. 31, 443 – 451. Yaniv Z., Dafni A., Friedman J., and Palevitch D. (1987), Plants used for the treatment of diabetes in Israel. J. Ethnopharmacol. 19, 145 – 151.