Improving classical scoring functions using random forest: The non-additivity of free energy terms’ contributions in binding

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorAfifi K.
dc.contributor.authorAl-Sadek A.F.
dc.contributor.otherDepartment of Computer Science
dc.contributor.otherModern Sciences and Arts University
dc.contributor.otherGiza
dc.contributor.otherEgypt; Central Lab for Agricultural Experts Systems
dc.contributor.otherMinistry of Agriculture and Land Reclamation
dc.contributor.otherGiza
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:53Z
dc.date.available2020-01-09T20:40:53Z
dc.date.issued2018
dc.descriptionScopus
dc.description.abstractDespite recent efforts to improve the scoring performance of scoring functions, accurately predicting the binding affinity is still a challenging task. Therefore, different approaches were tried to improve the prediction performance of four scoring functions (x-score, vina, autodock, and rf-score) by substituting the linear regression model of classical scoring function by random forest to examine the performance improvement if an additive functional form is not imposed, and by combining different scoring functions into hybrid ones. The datasets were derived from the PDBbind-CN database version 2016. When evaluating the original scoring functions on the generic dataset, rf-score has outperformed classical scoring functions, which shows the superiority of descriptor-based scoring functions. Substituting linear regression as a linear model by random forest as a nonlinear model had largely improved the scoring performance of autodock and vina while x-score had only a slight performance increase. All hybrid scoring functions had only a slight improvement�if any�on both of the combined scoring functions, which is not worth the slower calculation time. � 2018 John Wiley & Sons A/Sen_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=4000150314&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1111/cbdd.13206
dc.identifier.doiPubMed ID : 29655201
dc.identifier.issn17470277
dc.identifier.otherhttps://doi.org/10.1111/cbdd.13206
dc.identifier.otherPubMed ID : 29655201
dc.identifier.urihttps://t.ly/P5Wpr
dc.language.isoEnglishen_US
dc.publisherBlackwell Publishing Ltden_US
dc.relation.ispartofseriesChemical Biology and Drug Design
dc.relation.ispartofseries92
dc.subjectautodocken_US
dc.subjectautodock vinaen_US
dc.subjectdockingen_US
dc.subjectdrug designen_US
dc.subjectrf-scoreen_US
dc.subjectscoringen_US
dc.subjectscoring functionen_US
dc.subjectvirtual screeningen_US
dc.subjectx-scoreen_US
dc.subjectArticleen_US
dc.subjectbinding affinityen_US
dc.subjectcalculationen_US
dc.subjectdata baseen_US
dc.subjectenergyen_US
dc.subjecthybriden_US
dc.subjectlinear regression analysisen_US
dc.subjectpredictionen_US
dc.subjectpriority journalen_US
dc.subjectrandom foresten_US
dc.subjectscoring systemen_US
dc.subjectstatistical modelen_US
dc.subjectchemistryen_US
dc.subjectdrug designen_US
dc.subjectentropyen_US
dc.subjectmetabolismen_US
dc.subjectmolecular dockingen_US
dc.subjectliganden_US
dc.subjectproteinen_US
dc.subjectprotein bindingen_US
dc.subjectDrug Designen_US
dc.subjectEntropyen_US
dc.subjectLigandsen_US
dc.subjectMolecular Docking Simulationen_US
dc.subjectProtein Bindingen_US
dc.subjectProteinsen_US
dc.titleImproving classical scoring functions using random forest: The non-additivity of free energy terms’ contributions in bindingen_US
dc.typeArticleen_US
dcterms.isReferencedByPlewczynski, D., ?a?niewski, M., Augustyniak, R., Ginalski, K., (2011) J. Comput. Chem., 32, p. 742; Li, Y., Han, L., Liu, Z., Wang, R., (2014) J. Chem. Inf. Model., 54, p. 1717; Huang, S.-Y., Zou, X., (2010) Int. J. Mol. Sci., 11, p. 3016; Liu, J., Wang, R., (2015) J. Chem. Inf. Model., 55, p. 475; Wang, R., Lai, L., Wang, S., (2002) J. Comput.-Aided Mol., 16, p. 11; Trott, O., Olson, A.J., (2010) J. Comput. Chem., 31, p. 455; Huey, R., Morris, G.M., Olson, A.J., Goodsell, D.S., (2007) J. Comput. Chem., 28, p. 1145; Ballester, P.J., Mitchell, J.B.O., (2010) Bioinformatics, 26, p. 1169; Tanchuk, V.Y., Tanin, V.O., Vovk, A.I., Poda, G., (2016) Chem. Biol. Drug Des., 87, p. 618; Liu, Z., Li, Y., Han, L., Li, J., Liu, J., Zhao, Z., Nie, W., Wang, R., (2015) Bioinformatics, 31, p. 405; Quiroga, R., Villarreal, M.A., (2016) PLoS ONE, 11; Koes, D.R., Baumgartner, M.P., Camacho, C.J., (2013) J. Chem. Inf. Model., 53, p. 1893; Durrant, J.D., McCammon, J.A., (2011) J. Chem. Inf. Model., 51, p. 2897; Dai, H., Kumari, K.M., Ou, H., Wei, D., Xu, Q., Xiong, Y., Xu, Q., (2017) J. Theor. Biol., 417, p. 1; Qiao, Y., Xiong, Y., Gao, H., Zhu, X., Chen, P., (2018) BMC Bioinformatics, 19, p. 14; Baum, B., Muley, L., Smolinski, M., Heine, A., Hangauer, D., Klebe, G., (2010) J. Mol. Bio., 397, p. 1042; Li, H., Leung, K.-S., Wong, M.-H., Ballester, P.J., (2015) Mol. Inf., 34, p. 115; O'Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., Hutchison, G.R., (2011) J. Cheminform., 3, p. 33; Li, H., Leung, K.-S., Wong, M.-H., Ballester, P.J., (2014) BMC Bioinformatics, 15, p. 291; Zilian, D., Sotriffer, C.A., (2013) J. Chem. Inf. Model., 53, p. 1923
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: