Effects of sulforaphane on D-galactose-induced liver aging in rats: Role of keap-1/nrf-2 pathway.

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorSaleh D.O.
dc.contributor.authorMansour D.F.
dc.contributor.authorHashad I.M.
dc.contributor.authorBakeer R.M.
dc.contributor.otherDepartment of Pharmacology
dc.contributor.otherMedical Research Division
dc.contributor.otherThe National Research Centre
dc.contributor.other33 EL Bohouth St. (former EL Tahrir St.)
dc.contributor.otherP.O. 12622
dc.contributor.otherDokki
dc.contributor.otherGiza
dc.contributor.otherEgypt; Department of Clinical Pharmacy and Pharmacy Practice
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherAhram Canadian University
dc.contributor.otherEgypt; Clinical Biochemistry Unit
dc.contributor.otherFaculty of Pharmacy and Biotechnology
dc.contributor.otherGerman University in Cairo
dc.contributor.otherCairo
dc.contributor.otherEgypt; Department of Pathology
dc.contributor.otherFaculty of Medicine
dc.contributor.otherHelwan University
dc.contributor.otherEgypt; Instructor of Pathology
dc.contributor.otherOctober University of Modern Sciences and Arts (MSA)University
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:35Z
dc.date.available2020-01-09T20:40:35Z
dc.date.issued2019
dc.descriptionScopus
dc.description.abstractAging; a biological phenomenon characterized by progressive decline in cellular functions, is considered as a major risk factor of various liver diseases that plays as an adverse prognostic role, thus increasing mortality rate. However, diet is the main environmental factor that has a major impact on the aging process whereas; sulforaphane (SFN), an isothiocyanate organosulfur compound in cruciferous vegetables, has been reported with myriad biological effects. In the present study, SFN antiaging properties were evaluated on D-galactose (D-Gal)-induced liver aging in rats. For this purpose, forty adult male Wistar rats were divided into five groups. All animals, except the normal control, were intraperitoneally injected with D-Gal (300 mg/kg/day for 5 days a week)for six consecutive weeks. In the hepatoprotective groups, animals received oral SFN (0.5, 1.0 and 2.0 mg/kg)for 6 weeks concurrently with D-GAL. SFN administration improved liver biomarkers through decreasing serum levels of AST, ALT, total and direct bilirubin when compared to D-Gal-aging group. SFN significantly increased hepatic GSH level as well as catalase and glutathione-S-transferase activities while counteracted the elevation in hepatic oxidative stress markers; MDA, NO and protein carbonyl in aged rats. SFN abrogated the dysregulation in hepatic Keap-1, Nrf-2 and HO-1and limited the elevation of TNF-? and TGF-? concentrations in aging liver. Histopathologically, SFN decreased the intensity of hepatic fibrous proliferation in D-Gal-induced aging. In conclusion, SFN has shown hepatic anti-aging potential through promoting the antioxidant machinery via regulating Keap-1, Nrf-2 and HO-1 and antioxidant enzyme activities as well as ameliorating oxidative stress, hampering the inflammatory cytokines; TNF-? and TGF-?, and limiting hepatic fibrosis in a dose dependent manner. � 2019 Elsevier B.V.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=21333&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1016/j.ejphar.2019.04.043
dc.identifier.doiPubMed ID 31039346
dc.identifier.issn142999
dc.identifier.otherhttps://doi.org/10.1016/j.ejphar.2019.04.043
dc.identifier.otherPubMed ID 31039346
dc.identifier.urihttps://t.ly/zN5rN
dc.language.isoEnglishen_US
dc.publisherElsevier B.V.en_US
dc.relation.ispartofseriesEuropean Journal of Pharmacology
dc.relation.ispartofseries855
dc.subjectAgingen_US
dc.subjectD-galactoseen_US
dc.subjectFibrosisen_US
dc.subjectNrf-2en_US
dc.subjectRatsen_US
dc.subjectSulforaphaneen_US
dc.subjectalanine aminotransferaseen_US
dc.subjectaspartate aminotransferaseen_US
dc.subjectbilirubinen_US
dc.subjectcatalaseen_US
dc.subjectgalactoseen_US
dc.subjectglutathioneen_US
dc.subjectglutathione transferaseen_US
dc.subjectheme oxygenase 1en_US
dc.subjectkelch like ECH associated protein 1en_US
dc.subjectmalonaldehydeen_US
dc.subjectnitric oxideen_US
dc.subjectsulforaphaneen_US
dc.subjecttranscription factor Nrf2en_US
dc.subjecttransforming growth factor betaen_US
dc.subjecttumor necrosis factoren_US
dc.subjectantioxidanten_US
dc.subjectbiological markeren_US
dc.subjectgalactoseen_US
dc.subjectheme oxygenaseen_US
dc.subjectHmox1 protein, raten_US
dc.subjectisothiocyanic acid derivativeen_US
dc.subjectkelch like ECH associated protein 1en_US
dc.subjectNfe2l2 protein, raten_US
dc.subjectsulforafanen_US
dc.subjecttranscription factor Nrf2en_US
dc.subjecttransforming growth factor betaen_US
dc.subjecttumor necrosis factoren_US
dc.subjectadulten_US
dc.subjectagingen_US
dc.subjectalanine aminotransferase blood levelen_US
dc.subjectanimal tissueen_US
dc.subjectantiaging activityen_US
dc.subjectantioxidant activityen_US
dc.subjectArticleen_US
dc.subjectaspartate aminotransferase blood levelen_US
dc.subjectbilirubin blood levelen_US
dc.subjectcell proliferationen_US
dc.subjectcontrolled studyen_US
dc.subjectdose responseen_US
dc.subjectdrug effecten_US
dc.subjectdrug efficacyen_US
dc.subjectdrug mechanismen_US
dc.subjectenzyme activityen_US
dc.subjecthistopathologyen_US
dc.subjectliveren_US
dc.subjectliver protectionen_US
dc.subjectmaleen_US
dc.subjectnonhumanen_US
dc.subjectoxidative stressen_US
dc.subjectpriority journalen_US
dc.subjectraten_US
dc.subjectsignal transductionen_US
dc.subjectagingen_US
dc.subjectanimalen_US
dc.subjectblooden_US
dc.subjectcytologyen_US
dc.subjectdrug effecten_US
dc.subjectliveren_US
dc.subjectmetabolismen_US
dc.subjectWistar raten_US
dc.subjectAgingen_US
dc.subjectAnimalsen_US
dc.subjectAntioxidantsen_US
dc.subjectBiomarkersen_US
dc.subjectGalactoseen_US
dc.subjectHeme Oxygenase (Decyclizing)en_US
dc.subjectIsothiocyanatesen_US
dc.subjectKelch-Like ECH-Associated Protein 1en_US
dc.subjectLiveren_US
dc.subjectMaleen_US
dc.subjectNF-E2-Related Factor 2en_US
dc.subjectOxidative Stressen_US
dc.subjectRatsen_US
dc.subjectRats, Wistaren_US
dc.subjectTransforming Growth Factor betaen_US
dc.subjectTumor Necrosis Factor-alphaen_US
dc.titleEffects of sulforaphane on D-galactose-induced liver aging in rats: Role of keap-1/nrf-2 pathway.en_US
dc.typeArticleen_US
dcterms.isReferencedByAebi, H., Catalase in vitro (1984) Methods Enzymol., 105, pp. 121-126; Amjad, A.I., Parikh, R.A., Appleman, L.J., Hahm, E.R., Singh, K., Singh, S.V., Broccoli-Derived sulforaphane and chemoprevention of prostate cancer: from bench to bedside (2015) Curr. Pharmacol. Rep., 1, pp. 382-390; Andrews, G.R., Khalil, Z., Le Couteur, D.G., Experimental gerontological research in Australia (2002) Exp. Gerontol., 37, pp. 1303-1310; Aruoma, O.I., Neuroprotection by dietary antioxidants: new age of research (2002) Nahrung, 46, pp. 381-382; Astegiano, M., Sapone, N., Demarchi, B., Rossetti, S., Bonardi, R., Rizzetto, M., Laboratory evaluation of the patient with liver disease (2004) Eur. Rev. Med. Pharmacol. Sci., 8, pp. 3-9; Aydin, A.F., Kucukgergin, C., Coban, J., Dogan-Ekici, I., Dogru-Abbasoglu, S., Uysal, M., Kocak-Toker, N., Carnosine prevents testicular oxidative stress and advanced glycation end product formation in D-galactose-induced aged rats (2018) Andrologia, 50; Aydin, S., Yanar, K., Simsek, B., Cebe, T., Sitar, M.E., Belce, A., Cakatay, U., Galactose-induced aging model in rat testicular tissue (2018) J. Coll. Phys. Surg., 28, pp. 501-504; Baek, S.H., Park, M., Suh, J.H., Choi, H.S., Protective effects of an extract of young radish (Raphanus sativus L)cultivated with sulfur (sulfur-radish extract)and of sulforaphane on carbon tetrachloride-induced hepatotoxicity (2008) Biosci. Biotechnol. Biochem., 72, pp. 1176-1182; Baird, L., Dinkova-Kostova, A.T., The cytoprotective role of the Keap1-Nrf2 pathway (2011) Arch. Toxicol., 85, pp. 241-272; Baynes, J.W., The role of AGEs in aging: causation or correlation (2001) Exp. Gerontol., 36, pp. 1527-1537; Beutler, E., Duron, O., Kelly, B.M., Improved method for the determination of blood glutathione (1963) J. Lab. Clin. Med., 61, pp. 882-888; Bloomer, S.A., Zhang, H.J., Brown, K.E., Kregel, K.C., Differential regulation of hepatic heme oxygenase-1 protein with aging and heat stress (2009) J. Gerontol. Ser. A Biol. Med. Sci., 64, pp. 419-425; Bo-Htay, C., Palee, S., Apaijai, N., Chattipakorn, S.C., Chattipakorn, N., Effects of d-galactose-induced ageing on the heart and its potential interventions (2018) J. Cell Mol. Med., 22, pp. 1392-1410; Boland, B.S., Dong, M.H., Bettencourt, R., Barrett-Connor, E., Loomba, R., Association of serum bilirubin with aging and mortality (2014) J. Clin. Exp. Hepatol., 4, pp. 1-7; Chen, P., Chen, F., Zhou, B., Antioxidative, anti-inflammatory and anti-apoptotic effects of ellagic acid in liver and brain of rats treated by D-galactose (2018) Sci. Rep., 8, p. 1465; Choi, K.M., Lee, Y.S., Kim, W., Kim, S.J., Shin, K.O., Yu, J.Y., Lee, M.K., Yoo, H.S., Sulforaphane attenuates obesity by inhibiting adipogenesis and activating the AMPK pathway in obese mice (2014) J. Nutr. Biochem., 25, pp. 201-207; Clarke, J.D., Hsu, A., Williams, D.E., Dashwood, R.H., Stevens, J.F., Yamamoto, M., Ho, E., Metabolism and tissue distribution of sulforaphane in Nrf2 knockout and wild-type mice (2011) Pharmaceut. Res., 28, pp. 3171-3179; Coban, J., Betul-Kalaz, E., Kucukgergin, C., Aydin, A.F., Dogan-Ekici, I., Dogru-Abbasoglu, S., Uysal, M., Blueberry treatment attenuates D-galactose-induced oxidative stress and tissue damage in rat liver (2014) Geriatr. Gerontol. Int., 14, pp. 490-497; Cooper, D.A., Webb, D.R., Peters, J.C., Evaluation of the potential for olestra to affect the availability of dietary phytochemicals (1997) J. Nutr., 127, pp. 1699S-1709S; Corssac, G.B., Campos-Carraro, C., Hickmann, A., da Rosa Araujo, A.S., Fernandes, R.O., Bello-Klein, A., Sulforaphane effects on oxidative stress parameters in culture of adult cardiomyocytes (2018) Biomed. Pharmacother., 104, pp. 165-171; Dinkova-Kostova, A.T., Fahey, J.W., Kostov, R.V., Kensler, T.W., KEAP1 and done? Targeting the NRF2 pathway with sulforaphane (2017) Trends Food Sci. Technol., 69, pp. 257-269; Dinkova-Kostova, A.T., Kostov, R.V., Canning, P., Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants (2017) Arch. Biochem. Biophys., 617, pp. 84-93; Egner, P.A., Chen, J.G., Wang, J.B., Wu, Y., Sun, Y., Lu, J.H., Zhu, J., Kensler, T.W., Bioavailability of Sulforaphane from two broccoli sprout beverages: results of a short-term, cross-over clinical trial in Qidong, China (2011) Cancer Prev. Res., 4, pp. 384-395; El-Baz, F.K., Hussein, R.A., Abdel Jaleel, G.A.R., Saleh, D.O., Astaxanthin-Rich haematococcus pluvialis algal hepatic modulation in D-galactose-induced aging in rats: role of Nrf2 (2018) Adv. Pharmaceut. Bull., 8, pp. 523-528; Fahey, J.W., Talalay, P., Antioxidant functions of sulforaphane: a potent inducer of Phase II detoxication enzymes (1999) Food Chem. Toxicol., 37, pp. 973-979; Flicker, L., Healthcare for older people in residential care�who cares? (2000) Med. J. Aust., 173, pp. 77-79; Gao, J., Yu, Z., Jing, S., Jiang, W., Liu, C., Yu, C., Sun, J., Li, H., Protective effect of Anwulignan against D-galactose-induced hepatic injury through activating p38 MAPK�nrf2�hO-1 pathway in mice (2018) Clin. Interv. Aging, 13, p. 1859; Gaona-Gaona, L., Molina-Jijon, E., Tapia, E., Zazueta, C., Hernandez-Pando, R., Calderon-Oliver, M., Zarco-Marquez, G., Pedraza-Chaverri, J., Protective effect of sulforaphane pretreatment against cisplatin-induced liver and mitochondrial oxidant damage in rats (2011) Toxicology, 286, pp. 20-27; Gomes, A.S., Gadelha, G.G., Lima, S.J., Garcia, J.A., Medeiros, J.V., Havt, A., Lima, A.A., Souza, M.H., Gastroprotective effect of heme-oxygenase 1/biliverdin/CO pathway in ethanol-induced gastric damage in mice (2010) Eur. J. Pharmacol., 642, pp. 140-145; Greaney, A.J., Maier, N.K., Leppla, S.H., Moayeri, M., Sulforaphane inhibits multiple inflammasomes through an Nrf2-independent mechanism (2016) J. Leukoc. Biol., 99, pp. 189-199; Guerrero-Beltran, C.E., Calderon-Oliver, M., Pedraza-Chaverri, J., Chirino, Y.I., Protective effect of sulforaphane against oxidative stress: recent advances (2012) Exp. Toxicol. Pathol.: Off. J. Ges. fur Toxikologische Pathol., 64, pp. 503-508; Habig, W.H., Pabst, M.J., Jakoby, W.B., Glutathione S-transferases. The first enzymatic step in mercapturic acid formation (1974) J. Biol. Chem., 249, pp. 7130-7139; Hamilton, M.L., Van Remmen, H., Drake, J.A., Yang, H., Guo, Z.M., Kewitt, K., Walter, C.A., Richardson, A., Does oxidative damage to DNA increase with age? (2001) Proc. Natl. Acad. Sci. Unit. States Am., 98, pp. 10469-10474; Hohn, A., Grune, T., Lipofuscin: formation, effects and role of macroautophagy (2013) Redox Biol., 1, pp. 140-144; Hong, I.H., Lewis, K., Iakova, P., Jin, J., Sullivan, E., Jawanmardi, N., Timchenko, L., Timchenko, N., Age-associated change of C/EBP family proteins causes severe liver injury and acceleration of liver proliferation after CCl4 treatments (2014) J. Biol. Chem., 289, pp. 1106-1118; Hu, R., Xu, C., Shen, G., Jain, M.R., Khor, T.O., Gopalkrishnan, A., Lin, W., Kong, A.-N.T., Identification of Nrf2-regulated genes induced by chemopreventive isothiocyanate PEITC by oligonucleotide microarray (2006) Life Sci., 79, pp. 1944-1955; Huang, C.C., Chiang, W.D., Huang, W.C., Huang, C.Y., Hsu, M.C., Lin, W.T., Hepatoprotective effects of swimming exercise against D-galactose-induced senescence rat model (2013) Evid. Based Complement Altern. Med., 2013, p. 275431; Iwaisako, K., Brenner, D.A., Kisseleva, T., What's new in liver fibrosis? The origin of myofibroblasts in liver fibrosis (2012) J. Gastroenterol. Hepatol., 27, pp. 65-68; Jaiswal, A.K., Nrf2 signaling in coordinated activation of antioxidant gene expression (2004) Free Radic. Biol. Med., 36, pp. 1199-1207; Kamath, P.S., Kim, W.R., Advanced Liver Disease Study, G., The model for end-stage liver disease (MELD) (2007) Hepatology, 45, pp. 797-805; Kassahun, K., Davis, M., Hu, P., Martin, B., Baillie, T., Biotransformation of the naturally occurring isothiocyanate sulforaphane in the rat: identification of phase I metabolites and glutathione conjugates (1997) Chem. Res. Toxicol., 10, pp. 1228-1233; Kensler, T.W., Egner, P.A., Agyeman, A.S., Visvanathan, K., Groopman, J.D., Chen, J.G., Chen, T.Y., Talalay, P., Keap1-nrf2 signaling: a target for cancer prevention by sulforaphane (2013) Top. Curr. Chem., 329, pp. 163-177; Kensler, T.W., Wakabayashi, N., Biswal, S., Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway (2007) Annu. Rev. Pharmacol. Toxicol., 47, pp. 89-116; Kikuchi, M., Ushida, Y., Shiozawa, H., Umeda, R., Tsuruya, K., Aoki, Y., Suganuma, H., Nishizaki, Y., Sulforaphane-rich broccoli sprout extract improves hepatic abnormalities in male subjects (2015) World J. Gastroenterol., 21, pp. 12457-12467; Kim, I.H., Kisseleva, T., Brenner, D.A., Aging and liver disease (2015) Curr. Opin. Gastroenterol., 31, pp. 184-191; Kim, J.-Y., Park, H.-J., Um, S.H., Sohn, E.-H., Kim, B.-O., Moon, E.-Y., Rhee, D.-K., Pyo, S., Sulforaphane suppresses vascular adhesion molecule-1 expression in TNF-?-stimulated mouse vascular smooth muscle cells: involvement of the MAPK, NF-?B and AP-1 signaling pathways (2012) Vasc. Pharmacol., 56, pp. 131-141; Kim, J.K., Park, S.U., Current potential health benefits of sulforaphane (2016) EXCLI J, 15, pp. 571-577; Kong, S.Z., Li, J.C., Li, S.D., Liao, M.N., Li, C.P., Zheng, P.J., Guo, M.H., Hu, Z., Anti-aging effect of chitosan oligosaccharide on d-galactose-induced subacute aging in mice (2018) Mar. Drugs, 16; Kubo, E., Chhunchha, B., Singh, P., Sasaki, H., Singh, D.P., Sulforaphane reactivates cellular antioxidant defense by inducing Nrf2/ARE/Prdx6 activity during aging and oxidative stress (2017) Sci. Rep., 7, p. 14130; Le Couteur, D.G., Cogger, V.C., Markus, A.M., Harvey, P.J., Yin, Z.L., Ansselin, A.D., McLean, A.J., Pseudocapillarization and associated energy limitation in the aged rat liver (2001) Hepatology, 33, pp. 537-543; Le Couteur, D.G., McLean, A.J., The aging liver. Drug clearance and an oxygen diffusion barrier hypothesis (1998) Clin. Pharmacokinet., 34, pp. 359-373; Le Couteur, D.G., Warren, A., Cogger, V.C., Smedsrod, B., Sorensen, K.K., De Cabo, R., Fraser, R., McCuskey, R.S., Old age and the hepatic sinusoid (2008) Anat. Rec., 291, pp. 672-683; Lii, C.-K., Liu, K.-L., Cheng, Y.-P., Lin, A.-H., Chen, H.-W., Tsai, C.-W., Sulforaphane and ?-lipoic acid upregulate the expression of the ? class of glutathione S-transferase through c-Jun and Nrf2 activation (2010) J. Nutr., 140, pp. 885-892; Lopez-Diazguerrero, N.E., Luna-Lopez, A., Gutierrez-Ruiz, M.C., Zentella, A., Konigsberg, M., Susceptibility of DNA to oxidative stressors in young and aging mice (2005) Life Sci., 77, pp. 2840-2854; Lopez-Otin, C., Blasco, M.A., Partridge, L., Serrano, M., Kroemer, G., The hallmarks of aging (2013) Cell, 153, pp. 1194-1217; Magesh, S., Chen, Y., Hu, L., Small molecule modulators of K eap1?N rf2?ARE pathway as potential preventive and therapeutic agents (2012) Med. Res. Rev., 32, pp. 687-726; Mahrouf-Yorgov, M., De L'Hortet, A.C., Cosson, C., Slama, A., Abdoun, E., Guidotti, J.-E., Fromenty, B., Gilgenkrantz, H., Increased susceptibility to liver fibrosis with age is correlated with an altered inflammatory response (2011) Rejuvenation Res., 14, pp. 353-363; Marrazzo, P., Angeloni, C., Freschi, M., Lorenzini, A., Prata, C., Maraldi, T., Hrelia, S., Combination of epigallocatechin gallate and sulforaphane counteracts in vitro oxidative stress and delays stemness loss of amniotic fluid stem cells (2018) Oxidative Med. Cell. Longev., 2018, p. 5263985; Montgomery, H.A.C., Dymock, J.E., The determination of nitrite in water (1961) Analyst, 86, pp. 414-416; Moustafa, P.E., Abdelkader, N.F., El Awdan, S.A., El-Shabrawy, O.A., Zaki, H.F., Extracellular matrix remodeling and modulation of inflammation and oxidative stress by sulforaphane in experimental diabetic peripheral neuropathy (2018) Inflammation, 41, pp. 1460-1476; Mu, X., Zhang, Y., Li, J., Xia, J., Chen, X., Jing, P., Song, X., Wang, Y., Angelica sinensis polysaccharide prevents hematopoietic stem cells senescence in D-galactose-induced aging mouse model (2017) Stem Cell. Int., 2017, p. 3508907; Nam, Y., Bae, J., Jeong, J.H., Ko, S.K., Sohn, U.D., Protective effect of ultrasonication-processed ginseng berry extract on the D-galactosamine/lipopolysaccharide-induced liver injury model in rats (2018) J. Ginseng Res., 42, pp. 540-548; Nazmy, E.A., El-Khouly, O.A., Atef, H., Said, E., Sulforaphane protects againstium valproate-induced acute liver injury (2017) Can. J. Physiol. Pharmacol., 95, pp. 420-426; Nguyen, T., Nioi, P., Pickett, C.B., The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress (2009) J. Biol. Chem., 284, pp. 13291-13295; Oh, C.J., Kim, J.-Y., Min, A.-K., Park, K.-G., Harris, R.A., Kim, H.-J., Lee, I.-K., Sulforaphane attenuates hepatic fibrosis via NF-E2-related factor 2-mediated inhibition of transforming growth factor-?/Smad signaling (2012) Free Radic. Biol. Med., 52, pp. 671-682; Ohkawa, H., Ohishi, N., Yagi, K., Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction (1979) Anal. Biochem., 95, pp. 351-358; Poulose, N., Raju, R., Aging and injury: alterations in cellular energetics and organ function (2014) Aging Dis., 5, pp. 101-108; Reitman, S., Frankel, S., A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases (1957) Am. J. Clin. Pathol., 28, pp. 56-63; Roller, J., Laschke, M.W., Scheuer, C., Menger, M.D., Heme oxygenase (HO)-1 protects from lipopolysaccharide (LPS)-mediated liver injury by inhibition of hepatic leukocyte accumulation and improvement of microvascular perfusion (2010) Langenbeck's Arch. Surg., 395, pp. 387-394; Ruan, Q., Liu, F., Gao, Z., Kong, D., Hu, X., Shi, D., Bao, Z., Yu, Z., The anti-inflamm-aging and hepatoprotective effects of huperzine A in D-galactose-treated rats (2013) Mech. Ageing Dev., 134, pp. 89-97; Sanchez-Font, M., Sebastia, J., Sanfeliu, C., Cristofol, R., Marfany, G., Gonz�les-Duarte, R., Peroxiredoxin 2 (PRDX2), an antioxidant enzyme, is underexpressed in Down syndrome fetal brains (2003) CMLS Cell. Mol. Life Sci., 60, pp. 1513-1523; Sayed, R.H., Khalil, W.K., Salem, H.A., Kenawy, S.A., El-Sayeh, B.M., Sulforaphane increases the survival rate in rats with fulminant hepatic failure induced by D-galactosamine and lipopolysaccharide (2014) Nutr. Res., 34, pp. 982-989; Shubin, A.V., Demidyuk, I.V., Komissarov, A.A., Rafieva, L.M., Kostrov, S.V., Cytoplasmic vacuolization in cell death and survival (2016) Oncotarget, 7, pp. 55863-55889; Struck, M.B., Andrutis, K.A., Ramirez, H.E., Battles, A.H., Effect of a short-term fast on ketamine-xylazine anesthesia in rats (2011) J. Am. Assoc., 50, pp. 344-348; Sun, X., Mi, L., Liu, J., Song, L., Chung, F.L., Gan, N., Sulforaphane prevents microcystin-LR-induced oxidative damage and apoptosis in BALB/c mice (2011) Toxicol. Appl. Pharmacol., 255, pp. 9-17; Sykiotis, G.P., Bohmann, D., Stress-activated cap'n'collar transcription factors in aging and human disease (2010) Sci. Signal., 3, p. re3; Tarozzi, A., Angeloni, C., Malaguti, M., Morroni, F., Hrelia, S., Hrelia, P., Sulforaphane as a potential protective phytochemical against neurodegenerative diseases (2013) Oxid. Med. Cell. Longev., 2013, p. 415078; Veeranki, O.L., Bhattacharya, A., Marshall, J.R., Zhang, Y., Organ-specific exposure and response to sulforaphane, a key chemopreventive ingredient in broccoli: implications for cancer prevention (2013) Br. J. Nutr., 109, pp. 25-32; Volonte, D., Liu, Z., Musille, P.M., Stoppani, E., Wakabayashi, N., Di, Y.P., Lisanti, M.P., Galbiati, F., Inhibition of nuclear factor-erythroid 2-related factor (Nrf2)by caveolin-1 promotes stress-induced premature senescence (2013) Mol. Biol. Cell, 24, pp. 1852-1862; Warren, A., Le Couteur, D.G., Fraser, R., Bowen, D.G., McCaughan, G.W., Bertolino, P., T lymphocytes interact with hepatocytes through fenestrations in murine liver sinusoidal endothelial cells (2006) Hepatology, 44, pp. 1182-1190; Weerasinghe, P., Buja, L.M., Oncosis: an important non-apoptotic mode of cell death (2012) Exp. Mol. Pathol., 93, pp. 302-308; Winiwarter, S., Bonham, N.M., Ax, F., Hallberg, A., Lennernas, H., Karlen, A., Correlation of human jejunal permeability (in vivo)of drugs with experimentally and theoretically derived parameters. A multivariate data analysis approach (1998) J. Med. Chem., 41, pp. 4939-4949; Wynne, H.A., Cope, L.H., Mutch, E., Rawlins, M.D., Woodhouse, K.W., James, O.F., The effect of age upon liver volume and apparent liver blood flow in healthy man (1989) Hepatology, 9, pp. 297-301; Yu, C., He, Q., Zheng, J., Li, L.Y., Hou, Y.H., Song, F.Z., Sulforaphane improves outcomes and slows cerebral ischemic/reperfusion injury via inhibition of NLRP3 inflammasome activation in rats (2017) Int. Immunopharmacol., 45, pp. 74-78; Zhang, Y., Chen, X., Yang, L., Zu, Y., Lu, Q., Effects of rosmarinic acid on liver and kidney antioxidant enzymes, lipid peroxidation and tissue ultrastructure in aging mice (2015) Food Funct., 6, pp. 927-931; Zhao, H.-D., Zhang, F., Shen, G., Li, Y.-B., Li, Y.-H., Jing, H.-R., Ma, L.-F., Tian, X.-F., Sulforaphane protects liver injury induced by intestinal ischemia reperfusion through Nrf2-ARE pathway (2010) World J. Gastroenterol.: WJG, 16, p. 3002; Zhen, Y.Z., Lin, Y.J., Li, K.J., Zhang, G.L., Zhao, Y.F., Wang, M.M., Wei, J.B., Hu, G., Effects of rhein lysinate on D-galactose-induced aging mice (2016) Exp. Ther. Med., 11, pp. 303-308; Zhou, R., Lin, J., Wu, D., Sulforaphane induces Nrf2 and protects against CYP2E1-dependent binge alcohol-induced liver steatosis (2014) Biochim. Biophys. Acta, 1840, pp. 209-218; Zoli, M., Magalotti, D., Bianchi, G., Gueli, C., Orlandini, C., Grimaldi, M., Marchesini, G., Total and functional hepatic blood flow decrease in parallel with ageing (1999) Age Ageing, 28, pp. 29-33
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_128.png
Size:
2.73 KB
Format:
Portable Network Graphics
Description: