Hybrid Algorithm for Rough Multi-level Multi-objective Decision Making Problems
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | El-Feky S.F. | |
dc.contributor.author | Abou-El-Enien T.H.M. | |
dc.contributor.other | Faculty of Computer Science | |
dc.contributor.other | Department of Computer Science | |
dc.contributor.other | Modern Science and Arts University | |
dc.contributor.other | Giza | |
dc.contributor.other | 12613 | |
dc.contributor.other | Egypt; Department of Operations Research and Decision Support | |
dc.contributor.other | Faculty of Computers and Information | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Giza | |
dc.contributor.other | 12613 | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:40:42Z | |
dc.date.available | 2020-01-09T20:40:42Z | |
dc.date.issued | 2019 | |
dc.description | Scopus | |
dc.description.abstract | The purpose of this paper is to generate compromise solutions for the multi-level multiobjective decision making (MLMODM) problems with rough parameters in the objective functions (RMLMODM) based on TOPSIS method and "Lower & Upper� approximations method. We introduce a computational hybrid algorithm for solving RMLMODM problems. Also, we solved illustrative numerical example and compared the solution of the proposed algorithm with the solution of Global Criterion (GC) method. The engineers and the scientists can apply the introduced hybrid algorithm to various practical RMLMODM problems to obtain numerical solutions. � 2019 Lavoisier. All rights reserved. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=21100202935&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.18280/isi.240101 | |
dc.identifier.doi | PubMed ID : | |
dc.identifier.issn | 16331311 | |
dc.identifier.other | https://doi.org/10.18280/isi.240101 | |
dc.identifier.other | PubMed ID : | |
dc.identifier.uri | https://t.ly/P5WK1 | |
dc.language.iso | English | en_US |
dc.publisher | International Information and Engineering Technology Association | en_US |
dc.relation.ispartofseries | Ingenierie des Systemes d'Information | |
dc.relation.ispartofseries | 24 | |
dc.subject | Compromise programming | en_US |
dc.subject | Global criterion method | en_US |
dc.subject | Multi-level programming | en_US |
dc.subject | Multi-objective programming | en_US |
dc.subject | Rough programming | en_US |
dc.subject | TOPSIS method | en_US |
dc.subject | Decision making | en_US |
dc.subject | Multiobjective optimization | en_US |
dc.subject | Compromise programming | en_US |
dc.subject | Global criterion method | en_US |
dc.subject | Multilevel programming | en_US |
dc.subject | Multiobjective programming | en_US |
dc.subject | TOPSIS method | en_US |
dc.subject | Numerical methods | en_US |
dc.title | Hybrid Algorithm for Rough Multi-level Multi-objective Decision Making Problems | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Pawlak, Z., Rough sets. Basic notions (1982) International Journal of Computer and Information Sciences, 11, pp. 341-356. , https://doi.org/10.1007/BF01001956; Hamzehee, A., Yaghoobi, M.A., Mashinchi, M., Linear programming with rough interval coefficients (2014) Intelligent and Fuzzy Systems, 26, pp. 1179-1189. , https://doi.org/10.3233/IFS-130804; Thm, A.-E.-E., (2013) TOPSIS Algorithms for Multiple Objectives Decision Making: Large Scale Programming Approach, , LAP LAMBERT Academic Publishing; El-Feky, S.F., Thm, A.-E.-E., Compromise solutions for rough multiple objective decision making problems (2018) Australian Journal of Basic and Applied Sciences, 12 (7), pp. 112-119. , https://doi.org/10.22587/ajbas.2018.12.7.18; Lai, Y.J., Liu, T.Y., Hwang, C.L., TOPSIS for MODM (1994) European Journal of Operational Research, 76, pp. 486-500. , https://doi.org/10.1016/0377-2217(94)90282-8; Abo-Sinna, M.A., Thm, A.-E.-E., An algorithm for solving large scale multiple objective decision making problems using TOPSIS approach (2005) AMSE Journals, Advances in Modelling and Analysis A, 42 (6), pp. 31-48; Thm, A.-E.-E., El-Feky, S.F., BI-level, multi-level multiple criteria decision making and TOPSIS approach-Theory, Applications and Software: A literature review (2005-2015) (2015) Global Journal of Advanced Research, 2 (7), pp. 1179-1195; Hwang, C.L., Masud, A.S.M., (1979) Multiple Objective Decision Making Methods and Applications, , Springer-Verlag; Liu, G.P., Yang, J.B., Whidborne, J.F., (2003) Multiobjective Optimisation and Control, , Research Studies Press LTD; Zeleny, M., (1982) Multiple Criteria Decision Making, , McGraw-Hill; Bellman, R.E., Zadeh, L.A., Decision-making in fuzzy environment (1970) Management Science, B, 17, pp. 141-164; Dauer, P., Osman, M.S.A., Decomposition of the parametric space in multiobjective convex programs using the generalized Tchebycheff norm (1985) Journal of Mathematical Analysis and Applications, 107 (1), pp. 156-166; Dubois, J.D., Prade, A., (1980) Fuzzy Sets and Systems: Theory and Applications, , Academic Press; Pramanik, S.T., Roy, K., Fuzzy goal programming approach to multilevel programming problems (2006) European Journal of Operational Research, 176, pp. 1151-1166. , https://doi.org/10.1016/j.ejor.2005.08.024; Sinha, S., Fuzzy programming approach to multilevel programming problems (2003) Fuzzy Sets and Syst, 136, pp. 189-202. , https://doi.org/10.1016/S0165-0114(02)00362-7 | |
dcterms.source | Scopus |