An AP structure with Finslerian Flavor: Path equations
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Wanas M.I. | |
dc.contributor.author | Kahil M.E. | |
dc.contributor.author | Kamal M.M. | |
dc.contributor.other | Astronomy Department | |
dc.contributor.other | Faculty of Science | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt; Egyptian Relativity Group (ERG) | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; The American University in Cairo | |
dc.contributor.other | New Cairo | |
dc.contributor.other | Egypt; October University for Modern Sciences and Arts | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt; Mathematics Department | |
dc.contributor.other | Faculty of Girls | |
dc.contributor.other | Ain Shams University | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:41:34Z | |
dc.date.available | 2020-01-09T20:41:34Z | |
dc.date.issued | 2016 | |
dc.description | Scopus | |
dc.description.abstract | The Bazanski approach to deriving paths is applied to Finsler geometry. The approach is generalized and applied to a new developed geometry called �Absolute parallelism with Finslerian Flavor� (FAP). A set of path equations is derived for the FAP. It is a horizontal (h) set. A striking feature in this set is that the coefficient of the torsion term jumps by a step of one-half from one equation to the other. It is tempting to believe that the h-set admits some quantum features. Comparisons with the corresponding sets in other geometries are given. Conditions for reducing the set of path equations obtained to well-known path equations in some geometries are summarized in a schematic diagram. � 2016, Pleiades Publishing, Ltd. | en_US |
dc.identifier.doi | https://doi.org/10.1134/S0202289316040162 | |
dc.identifier.doi | PubMedID | |
dc.identifier.issn | 2022893 | |
dc.identifier.other | https://doi.org/10.1134/S0202289316040162 | |
dc.identifier.other | PubMedID | |
dc.identifier.uri | https://t.ly/EXXpJ | |
dc.language.iso | English | en_US |
dc.publisher | Maik Nauka Publishing / Springer SBM | en_US |
dc.relation.ispartofseries | Gravitation and Cosmology | |
dc.relation.ispartofseries | 22 | |
dc.title | An AP structure with Finslerian Flavor: Path equations | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Wanas, M.I., (2001) Stud. Cercet. Stiin. Ser. Mat. Univ. Bacau, 10, p. 297; Wanas, M.I., (2009) Mod. Phys. Lett. A, 24 (22), p. 1749; Mikhail, F.I., (1962) Ain Shams Sci. Bull., 6, p. 87; Bazanski, S.L., (1977) Ann. Inst. H. Poincar� A, 27, p. 145; Bazanski, S.L., (1989) J. Math. Phys., 30, p. 1018; Wanas, M.I., Kahil, M.E., (1999) Gen. Rel. Grav., 31, p. 1921; Wanas, M.I., Kahil, M.E., (2005) Int. J. Geomet. Meth. Mod. Phys., 2, p. 1017; Kahil, M.E., (2006) J. Math. Phys., 47, p. 052501; Wanas, M.I., Kamal, M.M., (2011) Mod. Phys. Lett A, 26, p. 2065; Miron, R., Handbook of Differential Geometry, v. II, Ed. by F. J. E. Dillen and L. C. A (2006) Verstraelen (Elsevier; Wanas, M.I., Melek, M., Kahil, M.E., (1995) Astrophys. Space Sci., 228, p. 273; Wanas, M.I., (1998) Astrophys. Space Sci., 258, p. 237; Bao, D., Chern, S.S., Shern, Z., (2000) An Introduction to Riemann-Finsler Geometry; Miron, R., Hrimiuc, D., Shimada, H., Sab?u, V.S., (2001) The Geometry of Hamiltonian and Lagrangian Spaces; Einstein, A., (1955) The Meaning of Relativity, , Oxford; IBH Publishing Co., Calcutta; Wanas, M.I., (2012) Adv. High Energy Phys., 2012, p. 752613; Mikhail, F.I., Wanas, M.I., (1977) Proc. Roy. Soc. Lond. A, 356, p. 471; Wanas, M.I., Osman, S.N., ElKholy, R.I., (2015) Open Physics, 13, p. 247; Robertson, H.P., (1932) Ann. Math. Princeton, 33, p. 496; Wanas, M.I., (1986) Astrophys. Space Sci., 127, p. 21 | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_128.png
- Size:
- 2.73 KB
- Format:
- Portable Network Graphics
- Description: