An AP structure with Finslerian Flavor: Path equations

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorWanas M.I.
dc.contributor.authorKahil M.E.
dc.contributor.authorKamal M.M.
dc.contributor.otherAstronomy Department
dc.contributor.otherFaculty of Science
dc.contributor.otherCairo University
dc.contributor.otherGiza
dc.contributor.otherEgypt; Egyptian Relativity Group (ERG)
dc.contributor.otherCairo
dc.contributor.otherEgypt; The American University in Cairo
dc.contributor.otherNew Cairo
dc.contributor.otherEgypt; October University for Modern Sciences and Arts
dc.contributor.otherGiza
dc.contributor.otherEgypt; Mathematics Department
dc.contributor.otherFaculty of Girls
dc.contributor.otherAin Shams University
dc.contributor.otherCairo
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:41:34Z
dc.date.available2020-01-09T20:41:34Z
dc.date.issued2016
dc.descriptionScopus
dc.description.abstractThe Bazanski approach to deriving paths is applied to Finsler geometry. The approach is generalized and applied to a new developed geometry called �Absolute parallelism with Finslerian Flavor� (FAP). A set of path equations is derived for the FAP. It is a horizontal (h) set. A striking feature in this set is that the coefficient of the torsion term jumps by a step of one-half from one equation to the other. It is tempting to believe that the h-set admits some quantum features. Comparisons with the corresponding sets in other geometries are given. Conditions for reducing the set of path equations obtained to well-known path equations in some geometries are summarized in a schematic diagram. � 2016, Pleiades Publishing, Ltd.en_US
dc.identifier.doihttps://doi.org/10.1134/S0202289316040162
dc.identifier.doiPubMedID
dc.identifier.issn2022893
dc.identifier.otherhttps://doi.org/10.1134/S0202289316040162
dc.identifier.otherPubMedID
dc.identifier.urihttps://t.ly/EXXpJ
dc.language.isoEnglishen_US
dc.publisherMaik Nauka Publishing / Springer SBMen_US
dc.relation.ispartofseriesGravitation and Cosmology
dc.relation.ispartofseries22
dc.titleAn AP structure with Finslerian Flavor: Path equationsen_US
dc.typeArticleen_US
dcterms.isReferencedByWanas, M.I., (2001) Stud. Cercet. Stiin. Ser. Mat. Univ. Bacau, 10, p. 297; Wanas, M.I., (2009) Mod. Phys. Lett. A, 24 (22), p. 1749; Mikhail, F.I., (1962) Ain Shams Sci. Bull., 6, p. 87; Bazanski, S.L., (1977) Ann. Inst. H. Poincar� A, 27, p. 145; Bazanski, S.L., (1989) J. Math. Phys., 30, p. 1018; Wanas, M.I., Kahil, M.E., (1999) Gen. Rel. Grav., 31, p. 1921; Wanas, M.I., Kahil, M.E., (2005) Int. J. Geomet. Meth. Mod. Phys., 2, p. 1017; Kahil, M.E., (2006) J. Math. Phys., 47, p. 052501; Wanas, M.I., Kamal, M.M., (2011) Mod. Phys. Lett A, 26, p. 2065; Miron, R., Handbook of Differential Geometry, v. II, Ed. by F. J. E. Dillen and L. C. A (2006) Verstraelen (Elsevier; Wanas, M.I., Melek, M., Kahil, M.E., (1995) Astrophys. Space Sci., 228, p. 273; Wanas, M.I., (1998) Astrophys. Space Sci., 258, p. 237; Bao, D., Chern, S.S., Shern, Z., (2000) An Introduction to Riemann-Finsler Geometry; Miron, R., Hrimiuc, D., Shimada, H., Sab?u, V.S., (2001) The Geometry of Hamiltonian and Lagrangian Spaces; Einstein, A., (1955) The Meaning of Relativity, , Oxford; IBH Publishing Co., Calcutta; Wanas, M.I., (2012) Adv. High Energy Phys., 2012, p. 752613; Mikhail, F.I., Wanas, M.I., (1977) Proc. Roy. Soc. Lond. A, 356, p. 471; Wanas, M.I., Osman, S.N., ElKholy, R.I., (2015) Open Physics, 13, p. 247; Robertson, H.P., (1932) Ann. Math. Princeton, 33, p. 496; Wanas, M.I., (1986) Astrophys. Space Sci., 127, p. 21
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_128.png
Size:
2.73 KB
Format:
Portable Network Graphics
Description: