Ethosomes and lipid-coated chitosan nanocarriers for skin delivery of a chlorophyll derivative: A potential treatment of squamous cell carcinoma by photodynamic therapy
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Nasr S. | |
dc.contributor.author | Rady M. | |
dc.contributor.author | Gomaa I. | |
dc.contributor.author | Syrovet T. | |
dc.contributor.author | Simmet T. | |
dc.contributor.author | Fayad W. | |
dc.contributor.author | Abdel-Kader M. | |
dc.contributor.other | Institute of Pharmacology of Natural Products & Clinical Pharmacology | |
dc.contributor.other | Ulm University | |
dc.contributor.other | Ulm | |
dc.contributor.other | D-89081 | |
dc.contributor.other | Germany; Department of Chemistry | |
dc.contributor.other | School of Sciences and Engineering | |
dc.contributor.other | American University in Cairo (AUC) | |
dc.contributor.other | Egypt; Pharmaceutical Technology Department | |
dc.contributor.other | Faculty of Pharmacy and Biotechnology | |
dc.contributor.other | German University in Cairo (GUC). Main Entrance of Al-Tagamoa Al-Khames New Cairo City | |
dc.contributor.other | Egypt; Faculty of Pharmacy | |
dc.contributor.other | October University for Modern Sciences and Arts (MSA) | |
dc.contributor.other | Egypt; Drug Bioassay-Cell Culture Laboratory | |
dc.contributor.other | Pharmacognosy Department | |
dc.contributor.other | National Research Centre | |
dc.contributor.other | Dokki | |
dc.contributor.other | Giza | |
dc.contributor.other | 12622 | |
dc.contributor.other | Egypt; National Institute of Laser Enhanced Sciences (NILES) | |
dc.contributor.other | Cairo University (CU) | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:40:33Z | |
dc.date.available | 2020-01-09T20:40:33Z | |
dc.date.issued | 2019 | |
dc.description | Scopus | |
dc.description.abstract | Photodynamic therapy (PDT) is a localized treatment strategy used for skin cancers such as squamous cell carcinoma (SCC), the second most common form of skin cancer. PDT combines a photosensitizer, laser source and tissue oxygen. In this study, the selected photosensitizer, ferrous chlorophyllin (Fe-CHL) was loaded in ethosomes and lipid coated chitosan (PC/CHI) nanocarriers to enhance skin delivery of Fe-CHL for potential PDT of squamous carcinoma. The nanocarrier formulations were characterized and studied for their skin retention and penetration depth of Fe-CHL across mouse skin ex vivo using high performance liquid chromatography and confocal microscopy. Confocal microscope images of mouse skin showed deeper penetration of ethosomes down to the dermis when compared to PC/CHI that was confined to the epidermis, although they showed no significant difference in skin retention. Immunohistochemistry (IHC) staining with HE, ki67 and TUNEL show maintained skin structure and no cytotoxic effects of the nanocarrier gel formulations before laser exposure to mouse skin. The nanocarriers were also studied for their PDT effect against human SCC monolayer and three-dimensional (3-D) spheroids. When compared to ethosomes, PC/CHI showed higher cytotoxicity in MTT assay and live confocal microscopy showed cell disintegration after laser exposure. For 3-D spheroids, PC/CHI also showed higher cytotoxicity using acid phosphatase assay and a decrease in spheroid size was observed using light microscopy. In conclusion, both types of nanocarriers can be used for their potential treatment of SCC using PDT depending on the tumour localization in the skin. � 2019 Elsevier B.V. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=22454&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1016/j.ijpharm.2019.118528 | |
dc.identifier.doi | PubMed ID 31323373 | |
dc.identifier.issn | 3785173 | |
dc.identifier.other | https://doi.org/10.1016/j.ijpharm.2019.118528 | |
dc.identifier.other | PubMed ID 31323373 | |
dc.identifier.uri | https://t.ly/JX385 | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.relation.ispartofseries | International Journal of Pharmaceutics | |
dc.relation.ispartofseries | 568 | |
dc.subject | Chlorophyll derivatives | en_US |
dc.subject | Nanocarriers | en_US |
dc.subject | Photodynamic therapy | en_US |
dc.subject | Skin cancer | en_US |
dc.subject | Skin delivery | en_US |
dc.subject | acid phosphatase | en_US |
dc.subject | chitosan nanoparticle | en_US |
dc.subject | chlorophyll | en_US |
dc.subject | Ki 67 antigen | en_US |
dc.subject | animal tissue | en_US |
dc.subject | Article | en_US |
dc.subject | confocal microscopy | en_US |
dc.subject | controlled study | en_US |
dc.subject | cytotoxicity test | en_US |
dc.subject | drug delivery system | en_US |
dc.subject | drug formulation | en_US |
dc.subject | ex vivo study | en_US |
dc.subject | high performance liquid chromatography | en_US |
dc.subject | immunohistochemistry | en_US |
dc.subject | microscopy | en_US |
dc.subject | mouse | en_US |
dc.subject | MTT assay | en_US |
dc.subject | nonhuman | en_US |
dc.subject | photodynamic therapy | en_US |
dc.subject | priority journal | en_US |
dc.subject | skin structure | en_US |
dc.subject | squamous cell skin carcinoma | en_US |
dc.subject | tumor localization | en_US |
dc.subject | TUNEL assay | en_US |
dc.subject | zeta potential | en_US |
dc.title | Ethosomes and lipid-coated chitosan nanocarriers for skin delivery of a chlorophyll derivative: A potential treatment of squamous cell carcinoma by photodynamic therapy | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Abdulbaqi, I.M., Darwis, Y., Khan, N.A., Assi, R.A., Khan, A.A., Ethosomal nanocarriers: the impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials (2016) Int. J. Nanomed., 11, pp. 2279-2304; Ainbinder, D., Paolino, D., Fresta, M., Touitou, E., Drug delivery applications with ethosomes (2010) J. Biomed. Nanotechnol., 6 (5), pp. 558-568; Alvarez-Roman, R., Naik, A., Kalia, Y.N., Fessi, H., Guy, R.H., Visualization of skin penetration using confocal laser scanning microscopy (2004) Eur. J. Pharm. Biopharm., 58 (2), pp. 301-316; Alvarez-Roman, R., Naik, A., Kalia, Y.N., Guy, R.H., Fessi, H., Skin penetration and distribution of polymeric nanoparticles (2004) J. Control. Release, 99 (1), pp. 53-62; Baghdan, E., Pinnapireddy, S.R., Strehlow, B., Engelhardt, K.H., Schafer, J., Bakowsky, U., Lipid coated chitosan-DNA nanoparticles for enhanced gene delivery (2018) Int. J. Pharm., 535 (1-2), pp. 473-479; Biruss, B., Valenta, C., The advantage of polymer addition to a non-ionic oil in water microemulsion for the dermal delivery of progesterone (2008) Int. J. Pharm., 349 (1-2), pp. 269-273; Caddeo, C., Sales, O.D., Valenti, D., Sauri, A.R., Fadda, A.M., Manconi, M., Inhibition of skin inflammation in mice by diclofenac in vesicular carriers: liposomes, ethosomes and PEVs (2013) Int. J. Pharm., 443 (1-2), pp. 128-136; Cevc, G., Schatzlein, A., Richardsen, H., Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements (2002) Biochim. Biophys. Acta, 1564 (1), pp. 21-30; Chen, W.R., Korbelik, M., Bartels, K.E., Liu, H., Sun, J., Nordquist, R.E., Enhancement of laser cancer treatment by a chitosan-derived immunoadjuvant (2005) Photochem. Photobiol., 81 (1), pp. 190-195; Choksi, A.N., Poonawalla, T., Wilkerson, M.G., Nanoparticles: a closer look at their dermal effects (2010) J. Drugs Dermatol., 9 (5), pp. 475-481; Dayan, N., Touitou, E., Carriers for skin delivery of trihexyphenidyl HCl: ethosomes vs. liposomes (2000) Biomaterials, 21 (18), pp. 1879-1885; Ding, Y.F., Li, S., Liang, L., Huang, Q., Yuwen, L., Yang, W., Wang, R., Wang, L.H., Highly biocompatible chlorin e6-loaded chitosan nanoparticles for improved photodynamic cancer therapy (2018) ACS Appl Mater Interfaces, 10 (12), pp. 9980-9987; Duangjit, S., Opanasopit, P., Rojanarata, T., Ngawhirunpat, T., Characterization and In vitro skin permeation of meloxicam-loaded liposomes versus transfersomes (2011) J Drug Deliv, 2011. , 418316; Elsayed, M.M., Abdallah, O.Y., Naggar, V.F., Khalafallah, N.M., Deformable liposomes and ethosomes as carriers for skin delivery of ketotifen (2007) Pharmazie, 62 (2), pp. 133-137; England, C.G., Huang, J.S., James, K.T., Zhang, G., Gobin, A.M., Frieboes, H.B., Detection of phosphatidylcholine-coated gold nanoparticles in orthotopic pancreatic adenocarcinoma using hyperspectral imaging (2015) PLoS One, 10 (6). , e0129172; Fang, Y.P., Tsai, Y.H., Wu, P.C., Huang, Y.B., Comparison of 5-aminolevulinic acid-encapsulated liposome versus ethosome for skin delivery for photodynamic therapy (2008) Int. J. Pharm., 356 (1-2), pp. 144-152; Fink-Puches, R., Soyer, H.P., Hofer, A., Kerl, H., Wolf, P., Long-term follow-up and histological changes of superficial nonmelanoma skin cancers treated with topical delta-aminolevulinic acid photodynamic therapy (1998) Arch. Dermatol., 134 (7), pp. 821-826; Gamer, A.O., Leibold, E., van Ravenzwaay, B., The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin (2006) Toxicol. In Vitro, 20 (3), pp. 301-307; Gerola, A.P., Santana, A., Franca, P.B., Tsubone, T.M., de Oliveira, H.P., Caetano, W., Kimura, E., Hioka, N., Effects of metal and the phytyl chain on chlorophyll derivatives: physicochemical evaluation for photodynamic inactivation of microorganisms (2011) Photochem. Photobiol., 87 (4), pp. 884-894; Ghanbarzadeh, S., Arami, S., Enhanced transdermal delivery of diclofenac sodium via conventional liposomes, ethosomes, and transfersomes (2013) Biomed. Res. Int., 2013. , 616810; Godin, B., Touitou, E., Erythromycin ethosomal systems: physicochemical characterization and enhanced antibacterial activity (2005) Curr. Drug Deliv., 2 (3), pp. 269-275; Gomaa, I., Sebak, A., Afifi, N., Abdel-Kader, M., Liposomal delivery of ferrous chlorophyllin: a novel third generation photosensitizer for in vitro PDT of melanoma (2017) Photodiagnosis Photodyn. Ther., 18, pp. 162-170; Grenha, A., Remunan-Lopez, C., Carvalho, E.L., Seijo, B., Microspheres containing lipid/chitosan nanoparticles complexes for pulmonary delivery of therapeutic proteins (2008) Eur. J. Pharm. Biopharm., 69 (1), pp. 83-93; Gupta, A., Aggarwal, G., Singla, S., Arora, R., Transfersomes: a novel vesicular carrier for enhanced transdermal delivery of sertraline: development, characterization, and performance evaluation (2012) Sci. Pharm., 80 (4), pp. 1061-1080; Gupta, M., Agrawal, U., Vyas, S.P., Nanocarrier-based topical drug delivery for the treatment of skin diseases (2012) Exp. Opin Drug Deliv., 9 (7), pp. 783-804; Hejjaji, E.M.A., Smith, A.M., Morris, G.A., Evaluation of the mucoadhesive properties of chitosan nanoparticles prepared using different chitosan to tripolyphosphate (CS:TPP) ratios (2018) Int. J. Biol. Macromol., 120, pp. 1610-1617; Hibst, R., Saal, D., Russ, D., Kunzi-Rapp, K., Kienle, A., Stock, K., Thermal effects of white light illumination during microsurgery: clinical pilot study on the application safety of surgical microscopes (2010) J. Biomed. Opt., 15 (4). , 048003; Itoh, Y., Ninomiya, Y., Tajima, S., Ishibashi, A., Photodynamic therapy for acne vulgaris with topical 5-aminolevulinic acid (2000) Arch. Dermatol., 136 (9), pp. 1093-1095; Lopez-Pinto, J.M., Gonzalez-Rodriguez, M.L., Rabasco, A.M., Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes (2005) Int. J. Pharm., 298 (1), pp. 1-12; Mallidi, S., Spring, B.Q., Hasan, T., Optical imaging, photodynamic therapy and optically triggered combination treatments (2015) Cancer J., 21 (3), pp. 194-205; Megna, M., Fabbrocini, G., Marasca, C., Monfrecola, G., Photodynamic therapy and skin appendage disorders: a review (2017) Skin Appendage Disord., 2 (3-4), pp. 166-176; Patlolla, R.R., Desai, P.R., Belay, K., Singh, M.S., Translocation of cell penetrating peptide engrafted nanoparticles across skin layers (2010) Biomaterials, 31 (21), pp. 5598-5607; Prow, T.W., Grice, J.E., Lin, L.L., Faye, R., Butler, M., Becker, W., Wurm, E.M., Roberts, M.S., Nanoparticles and microparticles for skin drug delivery (2011) Adv. Drug Deliv. Rev., 63 (6), pp. 470-491; Rady, M., Gomaa, I., Afifi, N., Abdel-Kader, M., Dermal delivery of Fe-chlorophyllin via ultradeformable nanovesicles for photodynamic therapy in melanoma animal model (2018) Int. J. Pharm., 548 (1), pp. 480-490; Salatin, S., Yari Khosroushahi, A., Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles (2017) J. Cell Mol. Med., 21 (9), pp. 1668-1686; Schafer-Korting, M., Mehnert, W., Korting, H.C., Lipid nanoparticles for improved topical application of drugs for skin diseases (2007) Adv. Drug Deliv. Rev., 59 (6), pp. 427-443; Simone, C.B., 2nd, Friedberg, J.S., Glatstein, E., Stevenson, J.P., Sterman, D.H., Hahn, S.M., Cengel, K.A., Photodynamic therapy for the treatment of non-small cell lung cancer (2012) J. Thorac. Dis., 4 (1), pp. 63-75; Singh, D., Pradhan, M., Nag, M., Singh, M.R., Vesicular system: versatile carrier for transdermal delivery of bioactives (2015) Artif. Cells Nanomed. Biotechnol., 43 (4), pp. 282-290; Smith, T., Affram, K., Bulumko, E., Agyare, E., Evaluation of in-vitro cytotoxic effect of 5-FU loaded-chitosan nanoparticles against spheroid models (2018) J. Nat. Sci., 4 (10); Surma, M.A., Szczepaniak, A., Kroliczewski, J., Comparative studies on detergent-assisted apocytochrome b6 reconstitution into liposomal bilayers monitored by Zetasizer instruments (2014) PLoS One, 9 (11). , e111341; Tan, Q., Liu, W., Guo, C., Zhai, G., Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery (2011) Int. J. Nanomed., 6, pp. 1621-1630; Touitou, E., Ainbinde, D., 7. Ethosomes � an innovative carrier for enhanced delivery into and across the skin: Original research article: Ethosomes - novel vesicular carriers for enhanced delivery: characterization skin penetration properties, 2000 (2014) J. Control. Release, 190, pp. 44-46; Veness, M.J., High-risk cutaneous squamous cell carcinoma of the head and neck (2007) J. Biomed. Biotechnol., 2007 (3), p. 80572; Wang, J., Guo, Y., Gao, J., Jin, X., Wang, Z., Wang, B., Li, K., Li, Y., Detection and comparison of reactive oxygen species (ROS) generated by chlorophyllin metal (Fe, Mg and Cu) complexes under ultrasonic and visible-light irradiation (2011) Ultrason. Sonochem., 18 (5), pp. 1028-1034; Wang, X., Zhen, X., Wang, J., Zhang, J., Wu, W., Jiang, X., Doxorubicin delivery to 3D multicellular spheroids and tumors based on boronic acid-rich chitosan nanoparticles (2013) Biomaterials, 34 (19), pp. 4667-4679; Wen, Z., Liao, Q., Hu, Y., You, L., Zhou, L., Zhao, Y., A spheroid-based 3-D culture model for pancreatic cancer drug testing, using the acid phosphatase assay (2013) Braz. J. Med. Biol. Res., 46 (7), pp. 634-642; Work, G., Invited, R., Kim, J.Y.S., Kozlow, J.H., Mittal, B., Moyer, J., Olenecki, T., Rodgers, P., Guidelines of care for the management of cutaneous squamous cell carcinoma (2018) J. Am. Acad. Dermatol., 78 (3), pp. 560-578; Yang, L., Wu, L., Wu, D., Shi, D., Wang, T., Zhu, X., Mechanism of transdermal permeation promotion of lipophilic drugs by ethosomes (2017) Int. J. Nanomed., 12, pp. 3357-3364; Yu, W., Jiang, G., Zhang, Y., Liu, D., Xu, B., Zhou, J., Polymer microneedles fabricated from alginate and hyaluronate for transdermal delivery of insulin (2017) Mater. Sci. Eng. C Mater. Biol. Appl., 80, pp. 187-196; Zhang, X., Fryknas, M., Hernlund, E., Fayad, W., De Milito, A., Olofsson, M.H., Gogvadze, V., Linder, S., Induction of mitochondrial dysfunction as a strategy for targeting tumour cells in metabolically compromised microenvironments (2014) Nat. Commun., 5, p. 3295; Zhang, Y.T., Shen, L.N., Wu, Z.H., Zhao, J.H., Feng, N.P., Evaluation of skin viability effect on ethosome and liposome-mediated psoralen delivery via cell uptake (2014) J. Pharm. Sci., 103 (10), pp. 3120-3126 | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_128.png
- Size:
- 2.73 KB
- Format:
- Portable Network Graphics
- Description: