Chrysin attenuates global cerebral ischemic reperfusion injury via suppression of oxidative stress, inflammation and apoptosis

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorEl Khashab I.H.
dc.contributor.authorAbdelsalam R.M.
dc.contributor.authorElbrairy A.I.
dc.contributor.authorAttia A.S.
dc.contributor.otherDepartment of Pharmacology and Toxicology
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherModern Sciences and Arts University (MSA)
dc.contributor.otherGiza
dc.contributor.otherEgypt; Department of Pharmacology and Toxicology
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherCairo University
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:39Z
dc.date.available2020-01-09T20:40:39Z
dc.date.issued2019
dc.descriptionScopus
dc.description.abstractGlobal cerebral ischemia is a leading cause of mortality worldwide. Several biomechanisms play a role in the pathology of cerebral ischemia reperfusion damage, such as oxidative stress, inflammation, apoptosis and excitotoxicity. Chrysin, a natural flavonoid with many important biological activities, was investigated in the present study for its possible neuroprotective properties in a rat model of global ischemia reperfusion. Male Wistar rats were allocated into three groups: sham-operated, ischemia/reperfusion, and chrysin (30 mg/kg) groups. All animals were subjected to ischemia for 15 min followed by reperfusion for 60 min, except for the sham-operated group. Rats were decapitated, then both hippocampi were rapidly excised to evaluate several biomarkers that reflect ischemic injury. The obtained results showed that pre-treatment with chrysin attenuated ischemia-induced oxidative stress by: (i) restoring the glutathione level; and (ii) depressing the levels/activities of thiobarbituric acid reactive substances, the hippocampal NADPH, as well as the xanthine oxidase. Exposure to chrysin also suppressed the inflammation accompanying the ischemia/reperfusion (I/R) damage, through increasing the interleukin-10 level, while decreasing the levels of both interleukin-6 and tumour necrosis factor-alpha. Moreover, an increase in Bcl2 and a decrease in both BAX and Hsp90 levels were recorded following chrysin exposure, which was also accompanied with elevated glutamate and aspartate levels. In conclusion, chrysin has demonstrated an anti-ischemic potential, through attenuation of the mechanisms underlying I/R injury. These data add to the knowledge on the significance of natural flavonoids as neuroprotective agents. � 2019 The Authorsen_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=28620&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1016/j.biopha.2019.108619
dc.identifier.doiPubMed ID 30797156
dc.identifier.issn7533322
dc.identifier.otherhttps://doi.org/10.1016/j.biopha.2019.108619
dc.identifier.otherPubMed ID 30797156
dc.identifier.urihttps://t.ly/rx7kx
dc.language.isoEnglishen_US
dc.publisherElsevier Masson SASen_US
dc.relation.ispartofseriesBiomedicine and Pharmacotherapy
dc.relation.ispartofseries112
dc.subjectAntioxidanten_US
dc.subjectApoptosisen_US
dc.subjectChrysinen_US
dc.subjectInflammationen_US
dc.subjectIschemia-reperfusionen_US
dc.subjectNeuroprotectionen_US
dc.subjectchrysinen_US
dc.subjectinterleukin 10en_US
dc.subjectinterleukin 6en_US
dc.subjectneurotransmitteren_US
dc.subjectprotein bcl 2en_US
dc.subjecttumor necrosis factoren_US
dc.subjectchrysinen_US
dc.subjectflavonoiden_US
dc.subjectneuroprotective agenten_US
dc.subjectanimal experimenten_US
dc.subjectanimal modelen_US
dc.subjectapoptosisen_US
dc.subjectArticleen_US
dc.subjectblood brain barrieren_US
dc.subjectbrain ischemiaen_US
dc.subjectcommon carotid arteryen_US
dc.subjectcomparative studyen_US
dc.subjectcontrolled studyen_US
dc.subjectdecapitationen_US
dc.subjectenzyme activationen_US
dc.subjectinflammationen_US
dc.subjectmaleen_US
dc.subjectnonhumanen_US
dc.subjectoxidation reduction reactionen_US
dc.subjectoxidative stressen_US
dc.subjectpriority journalen_US
dc.subjectraten_US
dc.subjectreperfusion injuryen_US
dc.subjectanimalen_US
dc.subjectapoptosisen_US
dc.subjectbrain ischemiaen_US
dc.subjectdrug effecten_US
dc.subjectinflammationen_US
dc.subjectmetabolismen_US
dc.subjectoxidative stressen_US
dc.subjectpathologyen_US
dc.subjectphysiologyen_US
dc.subjectWistar raten_US
dc.subjectAnimalsen_US
dc.subjectApoptosisen_US
dc.subjectBrain Ischemiaen_US
dc.subjectFlavonoidsen_US
dc.subjectInflammationen_US
dc.subjectMaleen_US
dc.subjectNeuroprotective Agentsen_US
dc.subjectOxidative Stressen_US
dc.subjectRatsen_US
dc.subjectRats, Wistaren_US
dc.titleChrysin attenuates global cerebral ischemic reperfusion injury via suppression of oxidative stress, inflammation and apoptosisen_US
dc.typeArticleen_US
dcterms.isReferencedByMajid, A., Neuroprotection in stroke: past, present, and future (2014) ISRN Neurol., 2014; Bullock, S., Hales, M., Principles of Pathophysiology (2012), Pearson Higher Education AU; Grinberg, L.T., Thal, D.R., Vascular pathology in the aged human brain (2010) Acta Neuropathol., 119 (3), pp. 277-290; Nour, M., Scalzo, F., Liebeskind, D.S., Ischemia-reperfusion injury in stroke (2012) Interv. Neurol., 1 (3-4), pp. 185-199; Lapchak, P., Zhang, J.H., Neuroprotective Therapy for Stroke and Ischemic Disease (2016), Springer; Ginsberg, M.D., Busto, R., Rodent models of cerebral ischemia (1989) Stroke, 20 (12), pp. 1627-1642. , https://www.ncbi.nlm.nih.gov/pubmed/2688195; Traystman, R.J., Animal models of focal and global cerebral ischemia (2003) ILAR J., 44 (2), pp. 85-95. , https://www.ncbi.nlm.nih.gov/pubmed/12652003; Mergenthaler, P., Dirnagl, U., Meisel, A., Pathophysiology of stroke: lessons from animal models (2004) Metab. Brain Dis., 19 (3-4), pp. 151-167. , https://www.ncbi.nlm.nih.gov/pubmed/15554412; Nikonenko, A.G., Radenovic, L., Andjus, P.R., Skibo, G.G., Structural features of ischemic damage in the hippocampus (2009) Anat. Rec. (Hoboken), 292 (12), pp. 1914-1921; Zola-Morgan, S., Squire, L.R., Rempel, N.L., Clower, R.P., Amaral, D.G., Enduring memory impairment in monkeys after ischemic damage to the hippocampus (1992) J. Neurosci., 12 (7), pp. 2582-2596. , https://www.ncbi.nlm.nih.gov/pubmed/1613549; Victor, M., Agamanolis, D., Amnesia due to lesions confined to the hippocampus: a clinical-pathologic study (1990) J. Cogn. Neurosci., 2 (3), pp. 246-257; Manzolli, E.S., Serpeloni, J.M., Grotto, D., Bastos, J.K., Antunes, L.M.G., Barbosa, F., Barcelos, G.R.M., Protective effects of the flavonoid chrysin against methylmercury-induced genotoxicity and alterations of antioxidant status, in vivo (2015) Oxid. Med. Cell. Longev., 2015; Feng, X., Qin, H., Shi, Q., Zhang, Y., Zhou, F., Wu, H., Ding, S., Shen, P., Chrysin attenuates inflammation by regulating M1/M2 status via activating PPAR? (2014) Biochem. Pharmacol., 89 (4), pp. 503-514. , http://www.sciencedirect.com/science/article/pii/S0006295214002032; Satyanarayana, K., Sravanthi, K., Shaker, I.A., Ponnulakshmi, R., Selvaraj, J., Role of chrysin on expression of insulin signaling molecules (2015) J. Ayurveda Integr. Med., 6 (4), p. 248; Woo, K.J., Jeong, Y.-J., Inoue, H., Park, J.-W., Kwon, T.K., Chrysin suppresses lipopolysaccharide?induced cyclooxygenase?2 expression through the inhibition of nuclear factor for IL?6 (NF?IL6) DNA?binding activity (2005) FEBS Lett., 579 (3), pp. 705-711; Nijveldt, R.J., van Nood, E., van Hoorn, D.E., Boelens, P.G., van Norren, K., van Leeuwen, P.A., Flavonoids: a review of probable mechanisms of action and potential applications (2001) Am. J. Clin. Nutr., 74 (4), pp. 418-425; Durak, M.A., Chrysin Prevents Brain Damage Caused by Global Cerebral ischemia/reperfusion in a C57BL/J6 Mouse (2016); Yao, Y., Chen, L., Xiao, J., Wang, C., Jiang, W., Zhang, R., Hao, J., Chrysin protects against focal cerebral ischemia/reperfusion injury in mice through attenuation of oxidative stress and inflammation (2014) Int. J. Mol. Sci., 15 (11), pp. 20913-20926. , http://www.mdpi.com/1422-0067/15/11/20913/pdf; He, X.L., Wang, Y.H., Bi, M.G., Du, G.H., Chrysin improves cognitive deficits and brain damage induced by chronic cerebral hypoperfusion in rats (2012) Eur. J. Pharmacol., 680 (1-3), pp. 41-48; Tuttolomondo, A., Di Raimondo, D., di Sciacca, R., Pinto, A., Licata, G., Inflammatory cytokines in acute ischemic stroke (2008) Curr. Pharm. Des., 14 (33), pp. 3574-3589. , https://www.ncbi.nlm.nih.gov/pubmed/19075734; Okayama, N., Matsunaga, A., Kakihana, Y., Fujikawa, K., Inoue, K., Nagayama, T., Takeyama, M., Kanmura, Y., The effects of the phosphodiesterase inhibitor olprinone on global cerebral ischemia (2010) Anesth. Analg., 110 (3), pp. 888-894; Yagi, K., Simple assay for the level of total lipid peroxides in serum or plasma (1998) Methods Mol. Biol., 108, pp. 101-106; Torrance, L., Use of enzyme amplification in an ELISA to increase sensitivity of detection of barley yellow dwarf virus in oats and in individual vector aphids (1987) J. Virol. Methods, 15 (2), pp. 131-138. , http://www.sciencedirect.com/science/article/pii/0166093487900565; Afanassiev, V., Troppmair, J., Schuler, M., Weber, C., Rapp, U.R., Production and characterization of monoclonal antibodies against human BAD protein (1998) Hybridoma, 17 (4), pp. 383-387; Nass, S.J., Li, M., Amundadottir, L.T., Furth, P.A., Dickson, R.B., Role for Bcl-x L in the regulation of apoptosis by EGF and TGF?1 in c-myc overexpressing mammary epithelial cells (1996) Biochem. Biophys. Res. Commun., 227 (1), pp. 248-256. , http://www.sciencedirect.com/science/article/pii/S0006291X96914977; Moineau, S., Durmaz, E., Pandian, S., Klaenhammer, T.R., Differentiation of two abortive mechanisms by using monoclonal antibodies directed toward lactococcal bacteriophage capsid proteins (1993) Appl. Environ. Microbiol., 59 (1), pp. 208-212. , http://aem.asm.org/content/59/1/208.full.pdf; Sundaram, T.K., Cazzulo, J.J., Kornberg, H.L., Synthesis of pyruvate carboxylase from its apoenzyme and (+)-biotin in Bacillus stearothermophilus. Mechanism and control of the reaction (1971) Biochem. J., 122 (5), pp. 663-669. , https://www.ncbi.nlm.nih.gov/pubmed/5129260; Danninger, J., Deneke, U., Lang, G., Michal, G., Roeschlau, P., Method for the determination of substrates or enzyme activities (1979), Google Patents; Bora, K.S., Sharma, A., Evaluation of antioxidant and cerebroprotective effect of Medicago sativa Linn. against ischemia and reperfusion insult (2011) Evid. Complement. Alternat. Med., (2011), p. 792167; Ciftci, O., Oztanir, M.N., Cetin, A., Neuroprotective effects of beta-myrcene following global cerebral ischemia/reperfusion-mediated oxidative and neuronal damage in a C57BL/J6 mouse (2014) Neurochem. Res., 39 (9), pp. 1717-1723; Shen, M.H., Zhang, C.B., Zhang, J.H., Li, P.F., Electroacupuncture attenuates cerebral ischemia and reperfusion injury in middle cerebral artery occlusion of rat via modulation of apoptosis, inflammation, oxidative stress, and excitotoxicity (2016) Evid. Complement. Alternat. Med., (2016); Song, J., Park, J., Oh, Y., Lee, J.E., Glutathione suppresses cerebral infarct volume and cell death after ischemic injury: involvement of FOXO3 inactivation and Bcl2 expression (2015) Oxid. Med. Cell. Longev., 2015; Carbone, F., Teixeira, P.C., Braunersreuther, V., Mach, F., Vuilleumier, N., Montecucco, F., Pathophysiology and treatments of oxidative injury in ischemic stroke: focus on the phagocytic NADPH oxidase 2 (2015) Antioxid. Redox Signal., 23 (5), pp. 460-489; Kahles, T., Luedike, P., Endres, M., Galla, H.J., Steinmetz, H., Busse, R., Neumann-Haefelin, T., Brandes, R.P., NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke (2007) Stroke, 38 (11), pp. 3000-3006; Chen, H., Song, Y.S., Chan, P.H., Inhibition of NADPH oxidase is neuroprotective after ischemia�reperfusion (2009) J. Cereb. Blood Flow Metab., 29 (7), pp. 1262-1272; Kalogeris, T., Baines, C.P., Krenz, M., Korthuis, R.J., Cell biology of ischemia/reperfusion injury (2012) Int. Rev. Cell Mol. Boil., 298, p. 229; Hasturk, A.E., Harman, F., Arca, T., Sargon, M., Kilinc, K., Kaptanoglu, E., Neuroprotective effect of magnesium sulfate and dexamethasone on intrauterine ischemia in the fetal rat brain: ultrastructural evaluation (2012) Turk. Neurosurg., 23 (5), pp. 666-671; Ahmed, M.A., El Morsy, E.M., Ahmed, A.A., Pomegranate extract protects against cerebral ischemia/reperfusion injury and preserves brain DNA integrity in rats (2014) Life Sci., 110 (2), pp. 61-69; Yang, Y., Liu, P., Chen, L., Liu, Z., Zhang, H., Wang, J., Sun, X., Zhao, J., Therapeutic effect of Ginkgo biloba polysaccharide in rats with focal cerebral ischemia/reperfusion (I/R) injury (2013) Carbohydr. Polym., 98 (2), pp. 1383-1388; Schroeter, M., Jander, S., T-cell cytokines in injury-induced neural damage and repair (2005) Neuromol. Med., 7 (3), pp. 183-195; Ziebell, J.M., Morganti-Kossmann, M.C., Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury (2010) Neurotherapeutics, 7 (1), pp. 22-30; Kara, I., Nurten, A., Aydin, M., Ozkok, E., Ozen, I., Ozerman, B., Tuna, S., Karamursel, S., Ischemia/reperfusion in rat: antioxidative effects of enoant on EEG, oxidative stress and inflammation (2011) Brain Inj., 25 (1), pp. 113-126; Hosomi, N., Ban, C.R., Naya, T., Takahashi, T., Guo, P., Xiao-yu, R.S., Kohno, M., Tumor necrosis factor-? neutralization reduced cerebral edema through inhibition of matrix metalloproteinase production after transient focal cerebral ischemia (2005) J. Cereb. Blood Flow Metab., 25 (8), pp. 959-967; Al-Bahrani, A., Taha, S., Shaath, H., Bakhiet, M., TNF-? and IL-8 in acute stroke and the modulation of these cytokines by antiplatelet agents (2007) Curr. Neurovasc. Res., 4, pp. 31-37; Campbell, I.L., Abraham, C.R., Masliah, E., Kemper, P., Inglis, J.D., Oldstone, M.B., Mucke, L., Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6 (1993) Proc. Natl. Acad. Sci. U. S. A., 90 (21), pp. 10061-10065. , https://www.ncbi.nlm.nih.gov/pubmed/7694279; Gogvadze, V., Orrenius, S., Zhivotovsky, B., Multiple pathways of cytochrome c release from mitochondria in apoptosis (2006) Biochim. Biophys. Acta (BBA)-Bioenergetics, 1757 (5), pp. 639-647; Arabian, M., Aboutaleb, N., Soleimani, M., Mehrjerdi, F.Z., Ajami, M., Pazoki-Toroudi, H., Role of morphine preconditioning and nitric oxide following brain ischemia reperfusion injury in mice (2015) Iran J. Basic Med. Sci., 18 (1), pp. 14-21. , https://www.ncbi.nlm.nih.gov/pubmed/25810871; Schmitt, E., Gehrmann, M., Brunet, M., Multhoff, G., Garrido, C., Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy (2007) J. Leukoc. Biol., 81 (1), pp. 15-27; Sager, T.N., Laursen, H., Hansen, A.J., Changes in N-acetyl-aspartate content during focal and global brain ischemia of the rat (1995) J. Cereb. Blood Flow Metab., 15 (4), pp. 639-646; Baker, A.J., Zornow, M.H., Scheller, M.S., Yaksh, T.L., Skilling, S.R., Smullin, D.H., Larson, A.A., Kuczenski, R., Changes in extracellular concentrations of glutamate, aspartate, glycine, dopamine, serotonin, and dopamine metabolites after transient global ischemia in the rabbit brain (1991) J. Neurochem., 57 (4), pp. 1370-1379. , https://www.ncbi.nlm.nih.gov/pubmed/1895110; Phillis, J.W., Smith-Barbour, M., Perkins, L.M., O'Regan, M.H., Characterization of glutamate, aspartate, and GABA release from ischemic rat cerebral cortex (1994) Brain Res. Bull., 34 (5), pp. 457-466. , https://www.ncbi.nlm.nih.gov/pubmed/7915962; Ramanathan, M., Saravana Babu, C., Justin, A., Shanthakumari, S., Elucidation of neuroprotective role of endogenous GABA and energy metabolites in middle cerebralartery occluded model in rats (2012) Indian J. Exp. Boil., 50 (6), p. 391. , https://www.ncbi.nlm.nih.gov/pubmed/22734249; Oja, S.S., Saransaari, P., Ischemia induces release of endogenous amino acids from the cerebral cortex and cerebellum of developing and adult mice (2013) J. Amino Acids, 2013; Yang, Z.-B., Luo, X.-J., Ren, K.-D., Peng, J.-J., Tan, B., Liu, B., Lou, Z., Ren, X., Beneficial effect of magnesium lithospermate B on cerebral ischemia�reperfusion injury in rats involves the regulation of miR-107/glutamate transporter 1 pathway (2015) Eur. J. Pharmacol., 766, pp. 91-98. , http://www.sciencedirect.com/science/article/pii/S0014299915302740; Rossi, D.J., Brady, J.D., Mohr, C., Astrocyte metabolism and signaling during brain ischemia (2007) Nat. Neurosci., 10 (11), pp. 1377-1386; Kilic, T., Ciftci, O., Cetin, A., Kahraman, H., Preventive effect of chrysin on bleomycin-induced lung fibrosis in rats (2014) Inflammation, 37 (6), pp. 2116-2124; Villar, I.C., Galisteo, M., Vera, R., O'Valle, F., Garcia-Saura, M.F., Zarzuelo, A., Duarte, J., Effects of the dietary flavonoid chrysin in isolated rat mesenteric vascular bed (2004) J. Vasc. Res., 41 (6), pp. 509-516; Jiang, F., Guo, N., Dusting, G.J., Modulation of nicotinamide adenine dinucleotide phosphate oxidase expression and function by 3�,4�-dihydroxyflavonol in phagocytic and vascular cells (2008) J. Pharmacol. Exp. Ther., 324 (1), pp. 261-269; Lin, S., Zhang, G., Liao, Y., Pan, J., Inhibition of chrysin on xanthine oxidase activity and its inhibition mechanism (2015) Int. J. Biol. Macromol., 81, pp. 274-282; Malarvili, T., Veerappan, R., Effects of chrysin on free radicals and enzymatic antioxidants in N?-nitro-l-arginine methyl ester: induced hypertensive rats (2014) Int. J. Nutr. Pharmacol. Neurol. Dis., 4 (2), p. 112; Yoshizumi, K., Nishioka, N., Tsuji, T., Xanthine oxidase inhibitory activity and hypouricemia effect of propolis in rats (2005) Yakugaku Zasshi, 125 (3), pp. 315-321. , https://www.ncbi.nlm.nih.gov/pubmed/15738631; Aishwarya, V., Sumathi, T., Chrysin, a natural flavonoid attenuates cognitive dysfunction and neuronal loss associated with amyloid ? (25-35)-Induced oxidative stress: an experimental model of Alzheimer's disease (2015) Int. J. Pharmacogn. Phytochem. Res., 7 (2), pp. 224-236. , http://impactfactor.org/PDF/IJPPR/7/IJPPR,Vol7,Issue2,Article5.pdf; Uzar, E., Acar, A., Evliyaoglu, O., Firat, U., Kamasak, K., Gocmez, C., Alp, H., Ilhan, A., The anti-oxidant and anti-apoptotic effects of nebivolol and zofenopril in a model of cerebral ischemia/reperfusion in rats (2012) Prog. Neuropsychopharmacol. Biol. Psychiatry, 36 (1), pp. 22-28; Jiang, Y., Gong, F.L., Zhao, G.B., Li, J., Chrysin suppressed inflammatory responses and the inducible nitric oxide synthase pathway after spinal cord injury in rats (2014) Int. J. Mol. Sci., 15 (7), pp. 12270-12279; Lee, J.Y., Park, W., Anti-inflammatory effect of chrysin on RAW 264.7 mouse macrophages induced with polyinosinic-polycytidylic acid (2015) Biotechnol. Bioprocess Eng., 20 (6), pp. 1026-1034; Ali, B.H., Al Za'abi, M., Adham, S.A., Yasin, J., Nemmar, A., Schupp, N., Therapeutic effect of chrysin on adenine-induced chronic kidney disease in rats (2016) Cell Physiol. Biochem., 38 (1), pp. 248-257; Jung, J., Emerging utilization of chrysin using nanoscale modification (2016) J. Nanomater., 2016; Mantawy, E.M., El-Bakly, W.M., Esmat, A., Badr, A.M., El-Demerdash, E., Chrysin alleviates acute doxorubicin cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis (2014) Eur. J. Pharmacol., 728, pp. 107-118; Li, R., Peng, N., Li, X.P., Le, W.D., (-)-Epigallocatechin gallate regulates dopamine transporter internalization via protein kinase C-dependent pathway (2006) Brain Res., 1097 (1), pp. 85-89; Yoon, S.Y., dela Pena, I., Kim, S.M., Woo, T.S., Shin, C.Y., Son, K.H., Park, H., Cheong, J.H., Oroxylin A improves attention deficit hyperactivity disorder-like behaviors in the spontaneously hypertensive rat and inhibits reuptake of dopamine in vitro (2013) Arch. Pharm. Res., 36 (1), pp. 134-140
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
1-s2.0-S0753332218362140-main.pdf
Size:
604.9 KB
Format:
Adobe Portable Document Format
Description: