Design and synthesis of new quinoxaline derivatives as anticancer agents and apoptotic inducers
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | El Newahie A.M.S. | |
dc.contributor.author | Nissan Y.M. | |
dc.contributor.author | Ismail N.S.M. | |
dc.contributor.author | Abou El Ella D.A. | |
dc.contributor.author | Khojah S.M. | |
dc.contributor.author | Abouzid K.A.M. | |
dc.contributor.other | Pharmaceutical Organic Chemistry Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | October University for Modern Science and Arts (MSA) | |
dc.contributor.other | Cairo | |
dc.contributor.other | 12611 | |
dc.contributor.other | Egypt; Pharmaceutical Chemistry Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Cairo | |
dc.contributor.other | 11562 | |
dc.contributor.other | Egypt; Pharmaceutical Chemistry Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | October University for Modern Science and Arts (MSA) | |
dc.contributor.other | Cairo | |
dc.contributor.other | 12611 | |
dc.contributor.other | Egypt; Pharmaceutical Chemistry Department | |
dc.contributor.other | Faculty of Pharmaceutical Sciences and Pharmaceutical Industries | |
dc.contributor.other | Future University in Egypt | |
dc.contributor.other | Cairo | |
dc.contributor.other | 12311 | |
dc.contributor.other | Egypt; Pharmaceutical Chemistry Department | |
dc.contributor.other | Faculty of Pharmacy Ain Shams University | |
dc.contributor.other | Abbassia | |
dc.contributor.other | Cairo 11566 | |
dc.contributor.other | Egypt; Department of Pharmaceutical Chemistry | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Nahda University | |
dc.contributor.other | Beni Suef | |
dc.contributor.other | 62513 | |
dc.contributor.other | Egypt; Biochemistry Department | |
dc.contributor.other | Faculty of Science | |
dc.contributor.other | King Abdulaziz University | |
dc.contributor.other | Jeddah | |
dc.contributor.other | 21589 | |
dc.contributor.other | Saudi Arabia; Department of Organic and Medicinal Chemistry | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | University of Sadat City | |
dc.contributor.other | Menoufia | |
dc.contributor.other | 32897 | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:40:46Z | |
dc.date.available | 2020-01-09T20:40:46Z | |
dc.date.issued | 2019 | |
dc.description | Scopus | |
dc.description.abstract | The quinoxaline scaffold is a promising platform for the discovery of active chemotherapeutic agents. Three series of quinoxaline derivatives were synthesized and biologically evaluated against three tumor cell lines (HCT116 human colon carcinoma, HepG2, liver hepatocellular carcinoma and MCF-7, human breast adenocarcinoma cell line), in addition to VEGFR-2 enzyme inhibition activity. Compounds VIId, VIIIa, VIIIc, VIIIe and XVa exhibited promising activity against the tested cell lines and weak activity against VEGFR-2. Compound VIIIc induced a significant disruption in the cell cycle profile and cell cycle arrest at the G2/M phase boundary. In further assays, the cytotoxic effect of the highly active compounds was determined using a normal Caucasian fibroblast-like fetal lung cell line (WI-38). Compound VIIIc could be considered as a lead compound that merits further optimization and development as an anti-cancer and an apoptotic inducing candidate against the HCT116 cell line. � 2019 by the authors. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=26370&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.3390/molecules24061175 | |
dc.identifier.doi | PubMed ID 30934622 | |
dc.identifier.issn | 14203049 | |
dc.identifier.other | https://doi.org/10.3390/molecules24061175 | |
dc.identifier.other | PubMed ID 30934622 | |
dc.identifier.uri | https://t.ly/52XNY | |
dc.language.iso | English | en_US |
dc.publisher | MDPI AG | en_US |
dc.relation.ispartofseries | Molecules | |
dc.relation.ispartofseries | 24 | |
dc.subject | Anti-cancer activity | en_US |
dc.subject | Cell cycle | en_US |
dc.subject | Quinoxaline | en_US |
dc.subject | Synthesis | en_US |
dc.subject | antineoplastic agent | en_US |
dc.subject | quinoxaline derivative | en_US |
dc.subject | vasculotropin receptor 2 | en_US |
dc.subject | antagonists and inhibitors | en_US |
dc.subject | apoptosis | en_US |
dc.subject | cell cycle checkpoint | en_US |
dc.subject | cell proliferation | en_US |
dc.subject | chemical structure | en_US |
dc.subject | chemistry | en_US |
dc.subject | dose response | en_US |
dc.subject | drug design | en_US |
dc.subject | drug effect | en_US |
dc.subject | human | en_US |
dc.subject | nuclear magnetic resonance spectroscopy | en_US |
dc.subject | structure activity relation | en_US |
dc.subject | synthesis | en_US |
dc.subject | tumor cell line | en_US |
dc.subject | Antineoplastic Agents | en_US |
dc.subject | Apoptosis | en_US |
dc.subject | Cell Cycle Checkpoints | en_US |
dc.subject | Cell Line, Tumor | en_US |
dc.subject | Cell Proliferation | en_US |
dc.subject | Chemistry Techniques, Synthetic | en_US |
dc.subject | Dose-Response Relationship, Drug | en_US |
dc.subject | Drug Design | en_US |
dc.subject | Humans | en_US |
dc.subject | Magnetic Resonance Spectroscopy | en_US |
dc.subject | Molecular Structure | en_US |
dc.subject | Quinoxalines | en_US |
dc.subject | Structure-Activity Relationship | en_US |
dc.subject | Vascular Endothelial Growth Factor Receptor-2 | en_US |
dc.title | Design and synthesis of new quinoxaline derivatives as anticancer agents and apoptotic inducers | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Zong, X., Chen, J., Li, L., Cai, J., Sun, C., Ji, M., Discovery of 3,3a,4,5-tetrahydro-2H-benzo[g]indazole containing quinoxaline derivatives as novel EGFR/HER-2 dual inhibitors (2015) RSC Adv, 5, pp. 24814-24823; Siegel, R.L., Miller, K.D., Fedewa, S.A., Ahnen, D.J., Meester, R.G., Barzi, A., Jemal, A., Colorectal cancer statistics, 2017 (2017) CA Cancer J. Clin., 67, pp. 177-193; Madhusudan, S., Ganesan, T.S., Tyrosine kinase inhibitors in cancer therapy (2004) Clin. Biochem., 37, pp. 618-635; Hoefnagel, A.J., Van Koningsveld, H., Van Meurs, F., Peters, J.A., Sinnema, A., Van Bekkum, H., Reactions of hydroxyglycines. New synthetic routes to 4-phenylquinazoline derivatives (1993) Tetrahedron, 49, pp. 6899-6912; Noolvi, M.N., Patel, H.M., Bhardwaj, V., Chauhan, A., Synthesis and in vitro antitumor activity of substituted quinazoline and quinoxaline derivatives: Search for anticancer agent (2011) Eur. J. Med. Chem., 46, pp. 2327-2346; El Newahie, A.M.S., Ismail, N.S.M., El Ella, D.A.A., Abouzid, K.A.M., Quinoxaline-based scaffolds targeting tyrosine kinases and their potential anticancer activity (2016) Arch. Pharm. Chem. Life Sci., 349, pp. 309-326; Zghaib, Z., Guichou, J.-F., Vappiani, J., Bec, N., Hadj-Kaddour, K., Vincent, L.-A., Paniagua-Gayraud, S., Cuq, P., New imidazoquinoxaline derivatives: Synthesis, biological evaluation on melanoma, effect on tubulin polymerization and structure�activity relationships (2016) Bioorg. Med. Chem., 24, pp. 2433-2440; Balderas-Renteria, I., Gonz�lez-Barranco, P., Garc�a, A., Banik, B.K., Rivera, G., Anticancer drug design using scaffolds of ?-lactams, sulfonamides, quinoline, quinoxaline and natural products (2012) Drugs Advances in Clinical Trials. CMC, 19, pp. 4377-4398; Ghorab, M., Ragab, F., Heiba, H., El-Gazzar, M., El-Gazzar, M., Synthesis, in vitro anticancer screening and radiosensitizing evaluation of some new 4-[3-(substituted)thioureido]-N-(quinoxalin-2-yl)-benzenesulfonamide derivatives (2011) Acta Pharmaceutica, 61, pp. 415-425; G�ring, S., Bensinger, D., Naumann, E.C., Schmidt, B., Computer-guided design, synthesis, and biological evaluation of quinoxalinebisarylureas as FLT3 inhibitors (2015) ChemMedChem, 10, pp. 511-522; Gali-Muhtasib, H.U., Diab-Assaf, M., Haddadin, M.J., Retraction note to: Quinoxaline 1,4-dioxides induce G2/M cell cycle arrest and apoptosis in human colon cancer cells (2018) Cancer Chemother. Pharmacol., 81, p. 627; Weng, Q., Wang, D., Guo, P., Fang, L., Hu, Y., He, Q., Yang, B., Q39, a novel synthetic Quinoxaline 1,4-Di-N-oxide compound with anti-cancer activity in hypoxia (2008) Eur. J. Pharmacol., 581, pp. 262-269; Shahin, M.I., El Ella, D.A.A., Ismail, N.S., Abouzid, K.A., Design, synthesis and biological evaluation of type-II VEGFR-2 inhibitors based on quinoxaline scaffold (2014) Bioorg. Chem., 56, pp. 16-26; Ramurthy, S., Costales, A., Jansen, J.M., Levine, B., Renhowe, P.A., Shafer, C.M., Subramanian, S., Design and synthesis of 6,6-fused heterocyclic amides as raf kinase inhibitors (2012) Bioorg. Med. Chem. Lett., 22, pp. 1678-1681; Ghanbarimasir, Z., Bekhradnia, A., Morteza-Semnani, K., Rafiei, A., Razzaghi-Asl, N., Kardan, M., Design, synthesis, biological assessment and molecular docking studies of new 2-aminoimidazole-quinoxaline hybrids as potential anticancer agents (2018) Spectrochim. Acta A, 194, pp. 21-35; Lu, C., Tang, K., Li, Y., Li, P., Lin, Z., Yin, D., Chen, X., Huang, H., Design, synthesis and evaluation of novel diaryl urea derivatives as potential antitumor agents (2014) Eur. J. Med. Chem., 77, pp. 351-360; Ye, W., Yao, Q., Yu, S., Gong, P., Qin, M., Synthesis and antitumor activity of triazole-containing sorafenib analogs (2017) Molecules, 22, p. 1759; Liu, L., Cao, Y., Chen, C., Zhang, X., McNabola, A., Wilkie, D., Wilhelm, S., Carter, C., Sorafenib blocks the Raf/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5 (2006) Cancer Res, 66, pp. 11851-11858; Gris, J., Glisoni, R., Fabian, L., Fern�ndez, B., Moglioni, A.G., Synthesis of potential chemotherapic quinoxalinone derivatives by biocatalysis or microwave-assisted Hinsberg reaction (2008) Tetrahedron Lett, 49, pp. 1053-1056; Westphal, G., Wasicki, H., Zielinski, U., Weber, F.G., Tonew, M., Tonew, E., Potential virostatics. 1. Quinoxalines (1977) Die Pharmazie, 32, pp. 570-571; Singh, D.P., Deivedi, S.K., Hashim, S.R., Singhal, R.G., Synthesis and antimicrobial activity of some new quinoxaline derivatives (2010) Pharmaceuticals, 3, pp. 2416-2425; Hong, Y.S., Kim, H.M., Park, Y.T., Kim, H.S., Heterocyclic compounds with sulfone functional groups (II): Synthesis of 1-arenesulfonyl-2-quinoxalinones (2000) Bull. Korean Chem. Soc., 21, pp. 133-136; Romer, D.R., Synthesis of 2,3-dichloroquinoxalines via Vilsmeier-reagent chlorination (2009) J. Heterocycl. Chem., 46, pp. 317-319; Galal, S.A., Abdelsamie, A.S., Tokuda, H., Suzuki, N., Lida, A., Elhefnawi, M.M., Ramadan, R.A., Ayoub, S.A.G., Part I: Synthesis, cancer chemopreventive activity and molecular docking study of novel quinoxaline derivatives (2011) Eur. J. Med. Chem., 46, pp. 327-340; Sastry, C.R., Krishnan, V., Narayan, G., Vemana, K., Vairamani, M., Reaction of 2, 3-dichloroquinoxaline with acid hydrazides: A Convenient Synthesis of 1, 6-Disubstituted (1, 2, 4) Ditriazolo (4, 3-a: 30, 40-c)-and 3-Aryl/Heteroaryl (1, 3, 4) oxadiazino (5, 6-b) quinoxalines (1991) Indian J. Chem., 30, pp. 936-940; Deng, J., Feng, E., Ma, S., Zhang, Y., Liu, X., Li, H., Huang, H., Shen, X., Design and synthesis of small molecule RhoA inhibitors: A new promising therapy for cardiovascular diseases? (2011) J. Med. Chem., 54, pp. 4508-4522; Sekhar, C., Rao, V.S., Deuther-Conrad, W., Sridhar, D., Nagesh, H.N., Kumar, V.S., Brust, P., Kumar, M.M.K., Design, synthesis, and preliminary in vitro and in vivo pharmacological evaluation of 4-{4-[2-(4-(2-substitutedquinoxalin-3-yl) piperazin-1-yl) ethyl]phenyl} thiazoles as atypical antipsychotic agents (2013) Med. Chem. Res., 22, pp. 1660-1673; Wang, S., Yan, J., Wang, X., Yang, Z., Lin, F., Zhang, T., Synthesis and evaluation of the ?-glucosidase inhibitory activity of 3-[4-(phenylsulfonamido)benzoyl]-2H-1-benzopyran-2-one derivatives (2010) Eur. J. Med. Chem., 45, pp. 1250-1255; Kakuta, H., Zheng, X., Oda, H., Harada, S., Sugimoto, Y., Sasaki, K., Tai, A., Cyclooxygenase-1-selective inhibitors are attractive candidates for analgesics that do not cause gastric damage. Design and in vitro/in vivo evaluation of a benzamide-type cyclooxygenase-1 selective inhibitor (2008) J. Med. Chem., 51, pp. 2400-2411; Cee, V.J., Deak, H.L., Du, B., Geuns-Meyer, S.D., Hodous, B.L., Nguyen, H.N., Olivieri, P.R., Schenkel, L., (2007) Preparation of Substituted Phthalazinamines as Aurora Kinase Modulators, , 2 August; Dai, Y., Hartandi, K., Ji, Z., Ahmed, A.A., Albert, D.H., Bauch, J.L., Bouska, J.J., Glaser, K.B., Discovery of N-(4-(3-Amino-1H-indazol-4-yl)phenyl)-N�-(2-fluoro-5-methylphenyl)urea (ABT-869), a 3-Aminoindazole-Based Orally Active Multitargeted Receptor Tyrosine Kinase Inhibitor (2007) J. Med. Chem., 50, pp. 1584-1597; Brown, E., Moudachirou, M., Agents de d�doublement. 2. Synth�se d�arylur�thanes de l�acide (S)-lactique et leur utilisation dans le d�doublement de bases rac�miques (1994) Tetrahedron, 50, pp. 10309-10320; Gonz�lez-�lvarez, M., Alzuet, G., Borr�s, J., Agudo, L.D.C., la-Granda, S., Bernardo, J.M.M., Strong protective action of Copper(II) N-substituted sulfonamide complexes against reactive oxygen species (2004) J. Inorg. Biochem., 98, pp. 189-198; Mosmann, T., Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays (1983) J. Immunol. Methods, 65, pp. 55-63; A Scudiero, D., Shoemaker, R.H., Paull, K.D., Monks, A., Tierney, S., Nofziger, T.H., Currens, M.J., Boyd, M.R., Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines (1988) Cancer Res, 48, pp. 4827-4833 | |
dcterms.source | Scopus |