Design and synthesis of new quinoxaline derivatives as anticancer agents and apoptotic inducers

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorEl Newahie A.M.S.
dc.contributor.authorNissan Y.M.
dc.contributor.authorIsmail N.S.M.
dc.contributor.authorAbou El Ella D.A.
dc.contributor.authorKhojah S.M.
dc.contributor.authorAbouzid K.A.M.
dc.contributor.otherPharmaceutical Organic Chemistry Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Science and Arts (MSA)
dc.contributor.otherCairo
dc.contributor.other12611
dc.contributor.otherEgypt; Pharmaceutical Chemistry Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherCairo University
dc.contributor.otherCairo
dc.contributor.other11562
dc.contributor.otherEgypt; Pharmaceutical Chemistry Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Science and Arts (MSA)
dc.contributor.otherCairo
dc.contributor.other12611
dc.contributor.otherEgypt; Pharmaceutical Chemistry Department
dc.contributor.otherFaculty of Pharmaceutical Sciences and Pharmaceutical Industries
dc.contributor.otherFuture University in Egypt
dc.contributor.otherCairo
dc.contributor.other12311
dc.contributor.otherEgypt; Pharmaceutical Chemistry Department
dc.contributor.otherFaculty of Pharmacy Ain Shams University
dc.contributor.otherAbbassia
dc.contributor.otherCairo 11566
dc.contributor.otherEgypt; Department of Pharmaceutical Chemistry
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherNahda University
dc.contributor.otherBeni Suef
dc.contributor.other62513
dc.contributor.otherEgypt; Biochemistry Department
dc.contributor.otherFaculty of Science
dc.contributor.otherKing Abdulaziz University
dc.contributor.otherJeddah
dc.contributor.other21589
dc.contributor.otherSaudi Arabia; Department of Organic and Medicinal Chemistry
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherUniversity of Sadat City
dc.contributor.otherMenoufia
dc.contributor.other32897
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:46Z
dc.date.available2020-01-09T20:40:46Z
dc.date.issued2019
dc.descriptionScopus
dc.description.abstractThe quinoxaline scaffold is a promising platform for the discovery of active chemotherapeutic agents. Three series of quinoxaline derivatives were synthesized and biologically evaluated against three tumor cell lines (HCT116 human colon carcinoma, HepG2, liver hepatocellular carcinoma and MCF-7, human breast adenocarcinoma cell line), in addition to VEGFR-2 enzyme inhibition activity. Compounds VIId, VIIIa, VIIIc, VIIIe and XVa exhibited promising activity against the tested cell lines and weak activity against VEGFR-2. Compound VIIIc induced a significant disruption in the cell cycle profile and cell cycle arrest at the G2/M phase boundary. In further assays, the cytotoxic effect of the highly active compounds was determined using a normal Caucasian fibroblast-like fetal lung cell line (WI-38). Compound VIIIc could be considered as a lead compound that merits further optimization and development as an anti-cancer and an apoptotic inducing candidate against the HCT116 cell line. � 2019 by the authors.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=26370&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.3390/molecules24061175
dc.identifier.doiPubMed ID 30934622
dc.identifier.issn14203049
dc.identifier.otherhttps://doi.org/10.3390/molecules24061175
dc.identifier.otherPubMed ID 30934622
dc.identifier.urihttps://t.ly/52XNY
dc.language.isoEnglishen_US
dc.publisherMDPI AGen_US
dc.relation.ispartofseriesMolecules
dc.relation.ispartofseries24
dc.subjectAnti-cancer activityen_US
dc.subjectCell cycleen_US
dc.subjectQuinoxalineen_US
dc.subjectSynthesisen_US
dc.subjectantineoplastic agenten_US
dc.subjectquinoxaline derivativeen_US
dc.subjectvasculotropin receptor 2en_US
dc.subjectantagonists and inhibitorsen_US
dc.subjectapoptosisen_US
dc.subjectcell cycle checkpointen_US
dc.subjectcell proliferationen_US
dc.subjectchemical structureen_US
dc.subjectchemistryen_US
dc.subjectdose responseen_US
dc.subjectdrug designen_US
dc.subjectdrug effecten_US
dc.subjecthumanen_US
dc.subjectnuclear magnetic resonance spectroscopyen_US
dc.subjectstructure activity relationen_US
dc.subjectsynthesisen_US
dc.subjecttumor cell lineen_US
dc.subjectAntineoplastic Agentsen_US
dc.subjectApoptosisen_US
dc.subjectCell Cycle Checkpointsen_US
dc.subjectCell Line, Tumoren_US
dc.subjectCell Proliferationen_US
dc.subjectChemistry Techniques, Syntheticen_US
dc.subjectDose-Response Relationship, Drugen_US
dc.subjectDrug Designen_US
dc.subjectHumansen_US
dc.subjectMagnetic Resonance Spectroscopyen_US
dc.subjectMolecular Structureen_US
dc.subjectQuinoxalinesen_US
dc.subjectStructure-Activity Relationshipen_US
dc.subjectVascular Endothelial Growth Factor Receptor-2en_US
dc.titleDesign and synthesis of new quinoxaline derivatives as anticancer agents and apoptotic inducersen_US
dc.typeArticleen_US
dcterms.isReferencedByZong, X., Chen, J., Li, L., Cai, J., Sun, C., Ji, M., Discovery of 3,3a,4,5-tetrahydro-2H-benzo[g]indazole containing quinoxaline derivatives as novel EGFR/HER-2 dual inhibitors (2015) RSC Adv, 5, pp. 24814-24823; Siegel, R.L., Miller, K.D., Fedewa, S.A., Ahnen, D.J., Meester, R.G., Barzi, A., Jemal, A., Colorectal cancer statistics, 2017 (2017) CA Cancer J. Clin., 67, pp. 177-193; Madhusudan, S., Ganesan, T.S., Tyrosine kinase inhibitors in cancer therapy (2004) Clin. Biochem., 37, pp. 618-635; Hoefnagel, A.J., Van Koningsveld, H., Van Meurs, F., Peters, J.A., Sinnema, A., Van Bekkum, H., Reactions of hydroxyglycines. New synthetic routes to 4-phenylquinazoline derivatives (1993) Tetrahedron, 49, pp. 6899-6912; Noolvi, M.N., Patel, H.M., Bhardwaj, V., Chauhan, A., Synthesis and in vitro antitumor activity of substituted quinazoline and quinoxaline derivatives: Search for anticancer agent (2011) Eur. J. Med. Chem., 46, pp. 2327-2346; El Newahie, A.M.S., Ismail, N.S.M., El Ella, D.A.A., Abouzid, K.A.M., Quinoxaline-based scaffolds targeting tyrosine kinases and their potential anticancer activity (2016) Arch. Pharm. Chem. Life Sci., 349, pp. 309-326; Zghaib, Z., Guichou, J.-F., Vappiani, J., Bec, N., Hadj-Kaddour, K., Vincent, L.-A., Paniagua-Gayraud, S., Cuq, P., New imidazoquinoxaline derivatives: Synthesis, biological evaluation on melanoma, effect on tubulin polymerization and structure�activity relationships (2016) Bioorg. Med. Chem., 24, pp. 2433-2440; Balderas-Renteria, I., Gonz�lez-Barranco, P., Garc�a, A., Banik, B.K., Rivera, G., Anticancer drug design using scaffolds of ?-lactams, sulfonamides, quinoline, quinoxaline and natural products (2012) Drugs Advances in Clinical Trials. CMC, 19, pp. 4377-4398; Ghorab, M., Ragab, F., Heiba, H., El-Gazzar, M., El-Gazzar, M., Synthesis, in vitro anticancer screening and radiosensitizing evaluation of some new 4-[3-(substituted)thioureido]-N-(quinoxalin-2-yl)-benzenesulfonamide derivatives (2011) Acta Pharmaceutica, 61, pp. 415-425; G�ring, S., Bensinger, D., Naumann, E.C., Schmidt, B., Computer-guided design, synthesis, and biological evaluation of quinoxalinebisarylureas as FLT3 inhibitors (2015) ChemMedChem, 10, pp. 511-522; Gali-Muhtasib, H.U., Diab-Assaf, M., Haddadin, M.J., Retraction note to: Quinoxaline 1,4-dioxides induce G2/M cell cycle arrest and apoptosis in human colon cancer cells (2018) Cancer Chemother. Pharmacol., 81, p. 627; Weng, Q., Wang, D., Guo, P., Fang, L., Hu, Y., He, Q., Yang, B., Q39, a novel synthetic Quinoxaline 1,4-Di-N-oxide compound with anti-cancer activity in hypoxia (2008) Eur. J. Pharmacol., 581, pp. 262-269; Shahin, M.I., El Ella, D.A.A., Ismail, N.S., Abouzid, K.A., Design, synthesis and biological evaluation of type-II VEGFR-2 inhibitors based on quinoxaline scaffold (2014) Bioorg. Chem., 56, pp. 16-26; Ramurthy, S., Costales, A., Jansen, J.M., Levine, B., Renhowe, P.A., Shafer, C.M., Subramanian, S., Design and synthesis of 6,6-fused heterocyclic amides as raf kinase inhibitors (2012) Bioorg. Med. Chem. Lett., 22, pp. 1678-1681; Ghanbarimasir, Z., Bekhradnia, A., Morteza-Semnani, K., Rafiei, A., Razzaghi-Asl, N., Kardan, M., Design, synthesis, biological assessment and molecular docking studies of new 2-aminoimidazole-quinoxaline hybrids as potential anticancer agents (2018) Spectrochim. Acta A, 194, pp. 21-35; Lu, C., Tang, K., Li, Y., Li, P., Lin, Z., Yin, D., Chen, X., Huang, H., Design, synthesis and evaluation of novel diaryl urea derivatives as potential antitumor agents (2014) Eur. J. Med. Chem., 77, pp. 351-360; Ye, W., Yao, Q., Yu, S., Gong, P., Qin, M., Synthesis and antitumor activity of triazole-containing sorafenib analogs (2017) Molecules, 22, p. 1759; Liu, L., Cao, Y., Chen, C., Zhang, X., McNabola, A., Wilkie, D., Wilhelm, S., Carter, C., Sorafenib blocks the Raf/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5 (2006) Cancer Res, 66, pp. 11851-11858; Gris, J., Glisoni, R., Fabian, L., Fern�ndez, B., Moglioni, A.G., Synthesis of potential chemotherapic quinoxalinone derivatives by biocatalysis or microwave-assisted Hinsberg reaction (2008) Tetrahedron Lett, 49, pp. 1053-1056; Westphal, G., Wasicki, H., Zielinski, U., Weber, F.G., Tonew, M., Tonew, E., Potential virostatics. 1. Quinoxalines (1977) Die Pharmazie, 32, pp. 570-571; Singh, D.P., Deivedi, S.K., Hashim, S.R., Singhal, R.G., Synthesis and antimicrobial activity of some new quinoxaline derivatives (2010) Pharmaceuticals, 3, pp. 2416-2425; Hong, Y.S., Kim, H.M., Park, Y.T., Kim, H.S., Heterocyclic compounds with sulfone functional groups (II): Synthesis of 1-arenesulfonyl-2-quinoxalinones (2000) Bull. Korean Chem. Soc., 21, pp. 133-136; Romer, D.R., Synthesis of 2,3-dichloroquinoxalines via Vilsmeier-reagent chlorination (2009) J. Heterocycl. Chem., 46, pp. 317-319; Galal, S.A., Abdelsamie, A.S., Tokuda, H., Suzuki, N., Lida, A., Elhefnawi, M.M., Ramadan, R.A., Ayoub, S.A.G., Part I: Synthesis, cancer chemopreventive activity and molecular docking study of novel quinoxaline derivatives (2011) Eur. J. Med. Chem., 46, pp. 327-340; Sastry, C.R., Krishnan, V., Narayan, G., Vemana, K., Vairamani, M., Reaction of 2, 3-dichloroquinoxaline with acid hydrazides: A Convenient Synthesis of 1, 6-Disubstituted (1, 2, 4) Ditriazolo (4, 3-a: 30, 40-c)-and 3-Aryl/Heteroaryl (1, 3, 4) oxadiazino (5, 6-b) quinoxalines (1991) Indian J. Chem., 30, pp. 936-940; Deng, J., Feng, E., Ma, S., Zhang, Y., Liu, X., Li, H., Huang, H., Shen, X., Design and synthesis of small molecule RhoA inhibitors: A new promising therapy for cardiovascular diseases? (2011) J. Med. Chem., 54, pp. 4508-4522; Sekhar, C., Rao, V.S., Deuther-Conrad, W., Sridhar, D., Nagesh, H.N., Kumar, V.S., Brust, P., Kumar, M.M.K., Design, synthesis, and preliminary in vitro and in vivo pharmacological evaluation of 4-{4-[2-(4-(2-substitutedquinoxalin-3-yl) piperazin-1-yl) ethyl]phenyl} thiazoles as atypical antipsychotic agents (2013) Med. Chem. Res., 22, pp. 1660-1673; Wang, S., Yan, J., Wang, X., Yang, Z., Lin, F., Zhang, T., Synthesis and evaluation of the ?-glucosidase inhibitory activity of 3-[4-(phenylsulfonamido)benzoyl]-2H-1-benzopyran-2-one derivatives (2010) Eur. J. Med. Chem., 45, pp. 1250-1255; Kakuta, H., Zheng, X., Oda, H., Harada, S., Sugimoto, Y., Sasaki, K., Tai, A., Cyclooxygenase-1-selective inhibitors are attractive candidates for analgesics that do not cause gastric damage. Design and in vitro/in vivo evaluation of a benzamide-type cyclooxygenase-1 selective inhibitor (2008) J. Med. Chem., 51, pp. 2400-2411; Cee, V.J., Deak, H.L., Du, B., Geuns-Meyer, S.D., Hodous, B.L., Nguyen, H.N., Olivieri, P.R., Schenkel, L., (2007) Preparation of Substituted Phthalazinamines as Aurora Kinase Modulators, , 2 August; Dai, Y., Hartandi, K., Ji, Z., Ahmed, A.A., Albert, D.H., Bauch, J.L., Bouska, J.J., Glaser, K.B., Discovery of N-(4-(3-Amino-1H-indazol-4-yl)phenyl)-N�-(2-fluoro-5-methylphenyl)urea (ABT-869), a 3-Aminoindazole-Based Orally Active Multitargeted Receptor Tyrosine Kinase Inhibitor (2007) J. Med. Chem., 50, pp. 1584-1597; Brown, E., Moudachirou, M., Agents de d�doublement. 2. Synth�se d�arylur�thanes de l�acide (S)-lactique et leur utilisation dans le d�doublement de bases rac�miques (1994) Tetrahedron, 50, pp. 10309-10320; Gonz�lez-�lvarez, M., Alzuet, G., Borr�s, J., Agudo, L.D.C., la-Granda, S., Bernardo, J.M.M., Strong protective action of Copper(II) N-substituted sulfonamide complexes against reactive oxygen species (2004) J. Inorg. Biochem., 98, pp. 189-198; Mosmann, T., Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays (1983) J. Immunol. Methods, 65, pp. 55-63; A Scudiero, D., Shoemaker, R.H., Paull, K.D., Monks, A., Tierney, S., Nofziger, T.H., Currens, M.J., Boyd, M.R., Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines (1988) Cancer Res, 48, pp. 4827-4833
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_128.png
Size:
2.73 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
molecules-24-01175.pdf
Size:
2.5 MB
Format:
Adobe Portable Document Format
Description: