Flavonoids with acetylated branched glycans and bioactivity of Tipuana tipu (Benth.) Kuntze leaf extract

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorS. Afifi, Manal
dc.contributor.authorD. Elgindi, Omaima
dc.contributor.authorO. Bakr, Reham
dc.date.accessioned2020-02-23T08:50:42Z
dc.date.available2020-02-23T08:50:42Z
dc.date.issued2014
dc.descriptionMSA Google Scholaren_US
dc.description.abstractThe new acetylated kaempferol tetraglycoside, kaempferol-3-O-[2″(4-acetylrhamnopyranosyl)-3″-galactopyranosyl] robinobioside (1), was isolated from the aqueous methanolic leaf extract of Tipuana tipu Benth. The known kaempferol 3-[2″-(4-acetyl-rhamnosyl)] robinobioside (2), kaempferol 3-O-2″-rhamnopyranosylrutinoside (3), rutin (4), kaempferol 3-O-rutinoside (5), kaempferol 3-O-glucopyranoside (6), kaempferol 3-O-galactopyranoside (7), quarcetin 3-O-glucopyranoside (8), kaempferol (9) and quercetin (10) together with the chlorogenic acid (11) were also isolated and characterised. Structures were established on the basis of chemical and spectroscopic analysis including 1H NMR, 13C NMR, 2D NMR and ESI-MS. The methanol extract exhibited moderate antioxidant activity, IC50 28.96 μg/mL, compared with ascorbic acid (1.83 μg/mL) and tertiary-butylhydroquinone (1.92 μg/mL). The methanol and chloroform extracts exhibited potent cytotoxic activity; the former was found to be active against larynx and liver cell lines, while the latter being active against intestine and liver cell lines.en_US
dc.description.sponsorshipTaylor & Francisen_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=24819&tip=sid&clean=0
dc.identifier.citationAgrawalPK. 1989. Carbon-13 NMR of flavonoids. New York, Amsterdam: Elsevier. [Google Scholar] AgrawalPK. 1992. NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides. Photochemistry. 31:3307–3330. [Crossref], [Google Scholar] CardosoCL, SilvaDHS, GamboaIC, BolzaniVS. 2005. New biflavonoid and other flavonoids from the leaves of Chimarrhis turbinate and their antioxidant activities. J Braz Chem Soc. 16:1353–1360. [Crossref], [Web of Science ®], [Google Scholar] ChampavierY, AllaisDP, ChuliaAJ, KaouadjiM. 2000. Acetylated and non-acetylated flavonol triglycosides from Galega officinalis. Chem Pharm Bull. 48:281–282. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] DengS, DengZ, FanY, PengY, LiJ, XiongD, LiuR. 2009. Isolation and purification of three flavonoid glycosides from the leaves of Nelumbo nucifera (Lotus) by high-speed counter-current chromatography. J Chromatogr B Anal Technol Biomed Life Sci.24:2487–2492. [Crossref], [Google Scholar] El HadidiMN, BoulosL, El-GoharyM, MakarS. 1988. The street trees of Egypt. Cairo: American University at Cairo. [Google Scholar] ElsohlyHN, JoshiAS, NimrodAC. 1999. Antigiardialisoflavones from Machaerium aristulatum. Planta Med. 65:490. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] FossenT, AndersenØM.2006. Spectroscopic techniques applied to flavonoids. In: AndersenØM, MarkhamKR, editors. Flavonoids chemistry, biochemistry and applications. London, New York: Crc press,Taylor & francis group. [Google Scholar] GeptP, BeavisWD, BrummerEC, ShoemakerRC, StalkerHT, WeedenNF, YoungND. 2005. Legumes as a model plant family. Genomics for food and report of the cross-legume advances through genomic conference. Plant Physiol. 137:1228–1235. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] GroyneJ, LognayG, MarlierM. 1999. Accumulation of glycosidically bound compounds in Fragaria × ananassa cv. Elsanta fruits at various developmental stages. Biotechnol Agron Soc Environ. 3:5–9. [Google Scholar] HamzahAS, LajisNH. 1998. Chemical constituents of Hedyotis Herbacea. ASEAN Rev Biodivers Environ Conserv. 2:1–6. [Google Scholar] HarborneJB, MabryTJ. 1982. The flavonoids: advances in research. London: Chapman and Hall Ltd. [Crossref], [Google Scholar] HickeyM, KingC. 1997. Common families of flowering plants. UK: Cambridge University, S.M. Walters. [Google Scholar] JoshiUJ, GadgeAS, D'MelloP, SinhaR, SrivastavaS, GovilG. 2011. Anti-inflammatory, antioxidant and anticancer activity of Quercetin and its analogues. Int J Res Pharm Biomed Sci. 4:1756–1766. [Google Scholar] KansohAL, AfifiMS, ElgindiOD, BakrRO. 2009. Chemical composition, antimicrobial and cytotoxic activities of essential oil and lipoidal matter of the flowers and pods of Tipuana tipu growing in Egypt. Can J Pure Appl Sci. 3:661–668. [Google Scholar] KoracevicD, KoracevicG, DjordjevicV, AndrejevicS, CosicV. 2001. Method for the measurement of antioxidant activity in human fluids. J Clin Pathol. 54:356–361. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] MabryTJ, MarkhamKR, ThomasMB. 1969. Systematic identification of flavonoids. New York, NY: Springer. [Google Scholar] MarkhamKR, GeigerH. 1994. 1H-NMR spectroscopy of flavonoids and their glycosides in DMSO-D6. In: HarborneJB, editor. The flavonoids: advances in research since 1986. London: Chapman and Hall. [Google Scholar] MarkhamKR, TernaiB, StanleyR, GeigerH, MabryTJ. 1978. 13C NMR studies of flavonoids-III. Naturally occurring flavonoid glycosides and their acylated derivatives. Tetrahedron. 34:1389–1397. [Crossref], [Web of Science ®], [Google Scholar] PrattDE, MillerEE. 1984. A flavonoid antioxidant in Spanish peanuts (Arachiahypogoea). J Am Oil Chem Soc. 61:1064–1067. [Crossref], [Web of Science ®], [Google Scholar] SeoEK, KimNC, MiQ, ChaiH, WallME, WaniMC, NavarroHA, BurgessJP, GrahamJG, CerbiesesF, et al., 2001. Two cytotoxic compounds from the stem of Machaerium aristulatum. J Nat Prod. 64:1483–1485. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] SkehanP, StorengR, ScudieroD, MonksA, McMahonJ, VisticaD, WarrenJT, BokeschH, KenneyS, BoydMR. 1990. New colorimetric cytotoxicity assay for anticancer drug screening. J Natl Cancer Inst. 82:1107–1112. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] SokmenM, AngelovaM, KrumovaE, PashovaS, IvanchevaS, SokmenA, SerkedjievaJ. 2005. In vitro antioxidant activity of polyphenol extracts with antiviral properties from Geranium sanguineum L. Life Sci. 76:2981–2993. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] WangH, NairMG, StrasburgGM, BoorenAM, GrayJI. 1999. Antioxidant polyphenols from tart cherries (Prunuscerasus). J Agric Food Chem. 47:840–844. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] WenkertE, GottliebHE. 1977. Carbon-13 nuclear magnetic resonance spectroscopy of flavonoid and isoflavonoid compound. Phytochemistry. 16:1811–1816. [Crossref], [Web of Science ®], [Google Scholar] YasukawaK, TakidoM. 1993. Flavonoid glycosides from Lysimachiae herba and Lysimachia christinae var. typica. Planta Med. 59:578. [Crossref], [PubMed], [Web of Science ®],en_US
dc.identifier.doihttps://doi.org/10.1080/14786419.2013.847438
dc.identifier.otherhttps://doi.org/10.1080/14786419.2013.847438
dc.identifier.urihttps://t.ly/ZEKRx
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.relation.ispartofseriesNatural product research;Volume: 28 Issue: 4 Pages: 257-264
dc.subjectUniversity of Tipuana tipu, new acetylated kaempferol tetraglycoside, antioxidant activity, cytotoxic activityen_US
dc.titleFlavonoids with acetylated branched glycans and bioactivity of Tipuana tipu (Benth.) Kuntze leaf extracten_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Faculty Of Pharmacy Research Paper

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
51 B
Format:
Item-specific license agreed upon to submission
Description: