Response surface optimization of a cardioprotective compound through pharmacosomal drug delivery system: in vivo bioavailability and cardioprotective activity potential

dc.AffiliationOctober university for modern sciences and Arts MSA
dc.contributor.authorDawoud, Marwa H. S
dc.contributor.authorZaafan, Mai A
dc.contributor.authorSaleh, Sarah S
dc.contributor.authorMannaa, Islam M
dc.contributor.authorSweed, Nabila M
dc.date.accessioned2023-04-09T10:48:43Z
dc.date.available2023-04-09T10:48:43Z
dc.date.issued2023-04
dc.description.abstractVanillic acid (VA) is a phenolic compound with potential antioxidant activity, which improves ischemia-induced myocardial degeneration, by reducing oxidative stress; however, it sufers poor bioavailability owing to its poor solubility. VA-loaded pharmacosomes were optimized using a central composite design, where the efect of phosphatidylcholine:VA molar ratio and the precursor concentration were studied. An optimized formulation (O1) was prepared and tested for the release rate of VA, in vivo bioavailability, and cardioprotective potential on myocardial infarction-induced rats. The optimized formulation showed a particle size of 229.7 nm, polydispersity index of 0.29, and zeta potential of−30 mV. O1 showed a sustained drug release for 48 h. The HPLC–UV method was developed for the determination of VA in plasma samples using protein pre- cipitation. The optimized formulation showed a great improvement in the bioavailability as compared to VA. The residence time of the optimized formula was 3 times longer than VA. The optimized formulation showed a more potent cardioprotec- tive efect as compared to VA, via inhibition of the MAPK pathway with subsequent inhibition of PI3k/NF-κB signaling, in addition to its antioxidant efect. The optimized formulation showed normalization of many oxidative stress and infamma- tory biomarkers. Thus, a VA-loaded pharmacosome formulation with promising bioavailability and cardioprotective activity potential was prepared.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=19700182043&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1007/s13346-023-01315-w
dc.identifier.otherhttps://doi.org/10.1007/s13346-023-01315-w
dc.identifier.urihttp://repository.msa.edu.eg/xmlui/handle/123456789/5531
dc.language.isoen_USen_US
dc.publisherSpringer Publishing Companyen_US
dc.relation.ispartofseriesDrug Delivery and Translational Research;
dc.subjectVanillic acid ·en_US
dc.subjectBioavailability ·en_US
dc.subjectOptimization ·en_US
dc.subjectRelease rateen_US
dc.subjectCentral composite designen_US
dc.subjectCardioprotective activityen_US
dc.titleResponse surface optimization of a cardioprotective compound through pharmacosomal drug delivery system: in vivo bioavailability and cardioprotective activity potentialen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Response_surface_optimization_of_a_cardioprotectiv.pdf
Size:
3.85 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
51 B
Format:
Item-specific license agreed upon to submission
Description: