Lepidium meyenii (Maca) Roots: UPLC-HRMS, Molecular Docking, and Molecular Dynamics

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorIbrahim, Rana M
dc.contributor.authorElmasry, Ghada F
dc.contributor.authorRefaey, Rana H
dc.contributor.authorEl-Shiekh, Riham A
dc.date.accessioned2022-05-15T08:24:26Z
dc.date.available2022-05-15T08:24:26Z
dc.date.issued13/05/2022
dc.description.abstractLepidium meyenii or Maca is widely cultivated as a health care food supplement due to its nutritional and medicinal properties. Although there are a few in-depth studies evaluating Maca antihypertensive effects, the correlations between the chemical constituents and bioactivity of the plant have not been studied before. Thus, the roots were extracted using different solvents (aqueous, methanol, 50% methanol, and methylene chloride) and investigated for their antihypertensive and antioxidant activities through several in vitro assays. The methanolic extract exhibited the best renin and angiotensin converting enzyme (ACE) inhibitory activities with IC50 values of 24.79 ± 1.3 ng/mL and 22.02 ± 1.1 ng/mL, respectively, along with the highest antioxidant activity. In total, 120 metabolites from different classes, e.g., alkylamides, alkaloids, glucosinolates, organic acids, and hydantoin derivatives, were identified in the methanolic extract using ultrahigh-performance liquid chromatography/high-resolution mass spectrometry (UPLC/HRMS). Molecular docking simulations were used to investigate the potential binding modes and the intermolecular interactions of the identified compounds with ACE and renin active sites. Glucotropaeolin, β-carboline alkaloids, succinic acid, and 2,4-dihydroxy-3,5- cyclopentyl dienoic acid showed the highest affinity to target the ACE with high docking scores (S ranging from −35.32 to −22.51 kcal mol−1 ) compared to lisinopril (S = −36.64 kcal mol−1 ). Interestingly, macamides displayed the greatest binding affinity to the active site of renin with docking scores (S ranging from −22.47 to −28.25 kcal mol−1 ). Further, β-carbolines achieved docking scores comparable to that of the native ligand (S ranging from −13.50 to −20.06 kcal mol−1 ). Molecular dynamics simulations and MMPBSA were also carried out and confirmed the docking results. Additionally, the computational ADMET study predicted that the compounds attaining promising docking results had proper pharmacokinetics, drug-likeness characteristics, and safe toxicological profiles. Ultimately, our findings revealed that Maca roots could be considered a promising candidate as an antihypertensive drug.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=21100828963&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1021/acsomega.2c01342
dc.identifier.otherhttps://doi.org/10.1021/acsomega.2c01342
dc.identifier.urihttp://repository.msa.edu.eg/xmlui/handle/123456789/4939
dc.language.isoen_USen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.ispartofseriesACS Omega;
dc.subjectLepidiumen_US
dc.subjectmeyeniien_US
dc.subjectMolecular Dockingen_US
dc.subjectMolecular Dynamicsen_US
dc.titleLepidium meyenii (Maca) Roots: UPLC-HRMS, Molecular Docking, and Molecular Dynamicsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
acsomega.2c01342.pdf
Size:
10.69 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
51 B
Format:
Item-specific license agreed upon to submission
Description: