Population dynamics: A geometrical approach of some epidemic models
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Kahil M.E. | |
dc.contributor.other | Modern Sciences and Arts University | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt; American University in Cairo | |
dc.contributor.other | New Cairo | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-25T19:58:28Z | |
dc.date.available | 2020-01-25T19:58:28Z | |
dc.date.issued | 2011 | |
dc.description | Scopus | |
dc.description.abstract | Recently, the behavior of different epidemic models and their relation both to different types of ge- ometries and to some biological models has been revisited. Path equations representing the behavior of epidemic models and their corresponding deviation vectors are examined. A comparison between paths and their deviation vectors in Riemannian and Finslerian Geometries is presented. | en_US |
dc.identifier.doi | https://doi.org/ | |
dc.identifier.issn | 11092769 | |
dc.identifier.other | https://doi.org/ | |
dc.identifier.uri | https://t.ly/OXrBK | |
dc.language.iso | English | en_US |
dc.relation.ispartofseries | WSEAS Transactions on Mathematics | |
dc.relation.ispartofseries | 10 | |
dc.subject | Epidemic model | en_US |
dc.subject | Geometrical method | en_US |
dc.subject | Path equation | en_US |
dc.subject | Biological models | en_US |
dc.subject | Deviation vector | en_US |
dc.subject | Epidemic models | en_US |
dc.subject | Geometrical methods | en_US |
dc.subject | Path equation | en_US |
dc.subject | Mathematical techniques | en_US |
dc.subject | Epidemiology | en_US |
dc.title | Population dynamics: A geometrical approach of some epidemic models | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Murray, J.D., (1989) Mathematical Biology, , Biomathematics Texts, Springer-Verlag; Antonelli, P.L., Optimal growth of an ideal coral reef (1980) Acta Cient. Venezolana, 31, pp. 521-525; Antonelli, P.L., Finsler volterra-hamilton systems in ecology (1991) Tensor, 50, pp. 22-31; Voorhees, B.H., Conformally flat space-time of locally constant connection (1983) International Journal of Theoretical Physics, 22, pp. 251-260; Antonelli, P.L., Voorhees, B.H., Non-linear growth mechanics: I. Volterra-Hamilton systems (1983) Bulletin of Mathematical Biology, 45 (1), pp. 103-116; Epstein, J.M., (1977) Nonlinear Dynamics, Mathematical Biology and Social Science, , Addison-Wesley; Istas, J., (2005) Mathematical Modeling for the Life Sciences, , Springer; Hechcote, R.W., Qualitative analyses of communicable disease models (1976) Mathematical Biosciences, 28, pp. 335-356; Dodson, C.T.J., (2009) Information Geometry and Entropy in a Stochastic Epidemic Rate Process, , http://arxiv.org/abs/0903.2997, AriXiv 0903.2997; Antonelli, P.L., The differential geometry of starfish cycles: A 20-year retrospective and open problems (2005) Nonlinear Analysis, Theory, Methods and Applications, 63 (5-7), pp. 948-957. , DOI 10.1016/j.na.2005.02.059, PII S0362546X05002166; Antonelli, P.L., Rutz, S.F., Eco-strain in model forests (2009) Nonlinear Analysis Real World Applications, 10, pp. 576-588; Antonelli, P.L., Ingarden, R.S., Matsumoto, M., (1993) The Theory of Sparys and Finsler Spaces with Applications in Physics and Biology, , Kluwer Academic Publishers; Bazanski, S.L., Hamilton-jacobi formalism for geodesics and geodesic deviations (1989) J. Math. Phys., 30, pp. 1018-1029; Kahil, M.E., Motion in kaluza-klein type theories (2006) J. Math. Phys., 47, pp. 052501-052509; Novozhilov, A., (2008) Heterogeneous Susceptibles-Infectives Model: Mechanistic Derivation of the Power Law Transmission Function, , ArXiv: 0809.1578; Franceschetti, A., Pugliese, A., Threshold behaviour of a sir epidemic model with age structure and immmigration (2008) J. Math. Biol., 57, pp. 1-27 | |
dcterms.source | Scopus |