Population dynamics: A geometrical approach of some epidemic models

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorKahil M.E.
dc.contributor.otherModern Sciences and Arts University
dc.contributor.otherGiza
dc.contributor.otherEgypt; American University in Cairo
dc.contributor.otherNew Cairo
dc.contributor.otherEgypt
dc.date.accessioned2020-01-25T19:58:28Z
dc.date.available2020-01-25T19:58:28Z
dc.date.issued2011
dc.descriptionScopus
dc.description.abstractRecently, the behavior of different epidemic models and their relation both to different types of ge- ometries and to some biological models has been revisited. Path equations representing the behavior of epidemic models and their corresponding deviation vectors are examined. A comparison between paths and their deviation vectors in Riemannian and Finslerian Geometries is presented.en_US
dc.identifier.doihttps://doi.org/
dc.identifier.issn11092769
dc.identifier.otherhttps://doi.org/
dc.identifier.urihttps://t.ly/OXrBK
dc.language.isoEnglishen_US
dc.relation.ispartofseriesWSEAS Transactions on Mathematics
dc.relation.ispartofseries10
dc.subjectEpidemic modelen_US
dc.subjectGeometrical methoden_US
dc.subjectPath equationen_US
dc.subjectBiological modelsen_US
dc.subjectDeviation vectoren_US
dc.subjectEpidemic modelsen_US
dc.subjectGeometrical methodsen_US
dc.subjectPath equationen_US
dc.subjectMathematical techniquesen_US
dc.subjectEpidemiologyen_US
dc.titlePopulation dynamics: A geometrical approach of some epidemic modelsen_US
dc.typeArticleen_US
dcterms.isReferencedByMurray, J.D., (1989) Mathematical Biology, , Biomathematics Texts, Springer-Verlag; Antonelli, P.L., Optimal growth of an ideal coral reef (1980) Acta Cient. Venezolana, 31, pp. 521-525; Antonelli, P.L., Finsler volterra-hamilton systems in ecology (1991) Tensor, 50, pp. 22-31; Voorhees, B.H., Conformally flat space-time of locally constant connection (1983) International Journal of Theoretical Physics, 22, pp. 251-260; Antonelli, P.L., Voorhees, B.H., Non-linear growth mechanics: I. Volterra-Hamilton systems (1983) Bulletin of Mathematical Biology, 45 (1), pp. 103-116; Epstein, J.M., (1977) Nonlinear Dynamics, Mathematical Biology and Social Science, , Addison-Wesley; Istas, J., (2005) Mathematical Modeling for the Life Sciences, , Springer; Hechcote, R.W., Qualitative analyses of communicable disease models (1976) Mathematical Biosciences, 28, pp. 335-356; Dodson, C.T.J., (2009) Information Geometry and Entropy in a Stochastic Epidemic Rate Process, , http://arxiv.org/abs/0903.2997, AriXiv 0903.2997; Antonelli, P.L., The differential geometry of starfish cycles: A 20-year retrospective and open problems (2005) Nonlinear Analysis, Theory, Methods and Applications, 63 (5-7), pp. 948-957. , DOI 10.1016/j.na.2005.02.059, PII S0362546X05002166; Antonelli, P.L., Rutz, S.F., Eco-strain in model forests (2009) Nonlinear Analysis Real World Applications, 10, pp. 576-588; Antonelli, P.L., Ingarden, R.S., Matsumoto, M., (1993) The Theory of Sparys and Finsler Spaces with Applications in Physics and Biology, , Kluwer Academic Publishers; Bazanski, S.L., Hamilton-jacobi formalism for geodesics and geodesic deviations (1989) J. Math. Phys., 30, pp. 1018-1029; Kahil, M.E., Motion in kaluza-klein type theories (2006) J. Math. Phys., 47, pp. 052501-052509; Novozhilov, A., (2008) Heterogeneous Susceptibles-Infectives Model: Mechanistic Derivation of the Power Law Transmission Function, , ArXiv: 0809.1578; Franceschetti, A., Pugliese, A., Threshold behaviour of a sir epidemic model with age structure and immmigration (2008) J. Math. Biol., 57, pp. 1-27
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
Population_dynamics_A_geometrical_approach_of_some.pdf
Size:
432.88 KB
Format:
Adobe Portable Document Format
Description: