Synthesis, anticancer activity and effects on cell cycle profile and apoptosis of novel thieno[2,3-d]pyrimidine and thieno[3,2-e] triazolo[4,3-c]pyrimidine derivatives

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorKandeel M.M.
dc.contributor.authorRefaat H.M.
dc.contributor.authorKassab A.E.
dc.contributor.authorShahin I.G.
dc.contributor.authorAbdelghany T.M.
dc.contributor.otherPharmaceutical Organic Chemistry Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherCairo University
dc.contributor.other33 Kasr El-Aini Street
dc.contributor.otherCairo
dc.contributor.other11562
dc.contributor.otherEgypt; College of Pharmaceutical Sciences and Pharmaceutical Industries
dc.contributor.otherFuture University
dc.contributor.otherCairo
dc.contributor.otherEgypt; Pharmaceutical Organic Chemistry Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Sciences and Arts
dc.contributor.otherGiza
dc.contributor.otherEgypt; Pharmacology Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherAl-Azhar University
dc.contributor.otherCairo
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:41:53Z
dc.date.available2020-01-09T20:41:53Z
dc.date.issued2015
dc.descriptionScopus
dc.description.abstractMotivated by the widely reported anticancer activity of thieno[2,3-d]pyrimidines a series of 24 new 2-substitutedhexahydrocycloocta[4,5] thieno[2,3-d]pyrimidines with different substituents at C-4 position and hexahydrocycloocta[4,5]thieno[3,2-e]-1,2,4-triazolo[4,3-c]pyrimidines were synthesized. The anticancer activity of 17 compounds were evaluated by National Cancer Institute (USA) using a two stage process utilizing 59 different human tumor cell lines representing leukemia, melanoma, cancers of lung, colon, central nervous system (CNS), ovary, kidney, prostate as well as breast. Compound 9c showed broad spectrum potent anticancer activity in nano molar to micro molar range against 56 human tumor cell lines with GI50 less than 10 ?M ranging from 0.495 to 5.57 mM, also it is worth mentioning that compound 9c had the marked highest selectivity against the two cell lines T-47D and MDA-MB-468 belonging to breast cancer with GI50 = 0.495 and 0.568 mM respectively, and its effect was further studied on cell cycle progression and induction of apoptosis in the MDA-MB-468 cell line. Results showed that compound 9c induced cell cycle arrest at G2/M phase and also, showed accumulation of cells in pre-G1 phase which may result from, degradation or fragmentation of the genetic materials indicating a possible role of apoptosis in compound 9c-induced cancer cell death and cytotoxicity and verifying this compound as promising selective anticancer lead. Compound 6c was selective against K-562, SR and MOLT-4 cell lines belonging to leukemia showing growth inhibition percentages 86.38, 65.76 and 60.40 at a single dose test, at the same time it showed lethal activity against HOP-92 representing non-small cell lung cancer. Interestingly, leukemia SR, CNS cancer SNB-75 and renal cancer UO-31 cell lines proved to be sensitive to compound 6d with growth inhibition percentages 52.86, 50.94 and 53.99 respectively. Additionally, compound 6d demonstrated lethal activity to HOP-92 belonging non-small cell lung cancer. � 2014 Elsevier Masson SAS.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=17464&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1016/j.ejmech.2014.12.009
dc.identifier.doiPubMed ID 25499930
dc.identifier.issn2235234
dc.identifier.otherhttps://doi.org/10.1016/j.ejmech.2014.12.009
dc.identifier.otherPubMed ID 25499930
dc.identifier.urihttps://t.ly/rx6A0
dc.language.isoEnglishen_US
dc.publisherElsevier Masson SASen_US
dc.relation.ispartofseriesEuropean Journal of Medicinal Chemistry
dc.relation.ispartofseries90
dc.subjectOctober University for Modern Sciences and Arts
dc.subjectUniversity for Modern Sciences and Arts
dc.subjectMSA University
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectAnticancer activityen_US
dc.subjectApoptosisen_US
dc.subjectCell cycle arrest profileen_US
dc.subjectpyrimidinesen_US
dc.subjectSynthesisen_US
dc.subjectThieno[2,3-d]pyrimidinesen_US
dc.subjectThieno[3,2-e]-1,2,4-triazolo[4,3-c]en_US
dc.subject2 (1 naphthyl) 4 (4 phenylpiperazin 1 yl) 5,6,7,8,9,10 hexa hydrocycloocta [4,5]thieno[2,3 d]pyrimidineen_US
dc.subject2 (1 naphthyl) 5,6,7,8,9,10 hexahydrocycloocta[4,5]thieno [2,3 d] pyrimidin 4(3h) oneen_US
dc.subject2 (3 pyridyl) 5,6,7,8,9,10 hexahydrocycloocta[4,5]thieno[2,3d]pyrimidin 4(3h) oneen_US
dc.subject3 (benzylthio) 5 (1 naphthyl) 8,9,10,11,12,13 hexahydrocycloocta[4,5]thieno[3,2 e] 1,2,4 triazolo[4,3 c]pyrimidineen_US
dc.subject3 (benzylthio) 5 (3 pyridyl) 8,9,10,11,12,13 hexahydrocyclo octa[4,5]thieno[3,2 e] 1,2,4 triazolo[4,3 c]pyrimidineen_US
dc.subject3 (ethylthio) 5 (3 pyridyl) 8,9,10,11,12,13 hexahydrocycloocta[4,5]thieno[3,2 e] 1,2,4 triazolo[4,3 c]pyrimidineen_US
dc.subject3 (ethylthio) 5(1 naphthyl) 8,9,10,11,12,13 hexahydrocycloocta[4,5]thieno[3,2 e] 1,2,4 triazolo[4,3 c]pyrimidineen_US
dc.subject4 (2 flouroanilino) 2 (1 naphthyl) 5,6,7,8,9,10 hexahydrocyclooct[4,5]thieno[2,3 d]pyrimidineen_US
dc.subject4 (2 flouroanilino) 2 (3 pyridyl) 5,6,7,8,9,10 hexahydrocyclooct[4,5]thieno[2,3 d]pyrimidineen_US
dc.subject4 (2 methoxyanilino) 2 (1 naphthyl) 5,6,7,8,9,10 hexahydro cyclooct[4,5]thieno[2,3 d]pyrimidineen_US
dc.subject4 (2 methoxyanilino) 2 (3 pyridyl) 5,6,7,8,9,10 hexahydro cyclooct[4,5]thieno[2,3 d]pyrimidineen_US
dc.subject4 (4 methoxyanilino) 2 (1 naphthyl) 5,6,7,8,9,10 hexahydro cyclooct[4,5]thieno[2,3 d]pyrimidineen_US
dc.subject4 (4 methoxyanilino) 2 (3 pyridyl) 5,6,7,8,9,10 hexahydrocyclooct[4,5]thieno[2,3 d]pyrimidineen_US
dc.subject4 (4 methylpiperazin 1 yl) 2 (1 naphthyl) 5,6,7,8,9,10 hexa hydrocycloocta[4,5]thieno[2,3 d]pyrimidineen_US
dc.subject4 (4 methylpiperazin 1 yl) 2 (3 pyridyl) 5,6,7,8,9,10 hexahydrocycloocta[4,5]thieno[2,3 d]pyrimidineen_US
dc.subject4 (4 phenylpiperazin 1 yl) 2 (3 pyridyl) 5,6,7,8,9,10 hexahydrocycloocta [4,5]thieno[2,3 d]pyrimidineen_US
dc.subject4 (morpholin 4 yl) 2 (1 naphthyl) 5,6,7,8,9,10 hexahydrocycloocta[4,5]thieno[2,3 d]pyrimidineen_US
dc.subject4 (morpholin 4 yl) 2 (3 pyridyl) 5,6,7,8,9,10 hexahydrocyclo octa[4,5]thieno[2,3 d]pyrimidineen_US
dc.subject4 chloro 2 (1 naphthyl) 5,6,7,8,9,10 hexahydrocycloocta [4,5]thieno[2,3 d]pyrimidineen_US
dc.subject4 chloro 2 (3 pyridyl) 5,6,7,8,9,10 hexahydrocycloocta[4,5] thieno[2,3 d]pyrimidineen_US
dc.subject4 hydrazinyl 2 (1 naphthyl) 5,6,7,8,9,10 hexahydrocycloocta[4,5]thieno[2,3 d]pyrimidineen_US
dc.subject4 hydrazinyl 2 (3 pyridyl) 5,6,7,8,9,10 hexahydrocycloocta [4,5]thieno[2,3 d]pyrimidineen_US
dc.subject5 (1 naphthyl) 3 sulfanyl 8,9,10,11,12,13 hexahydrocycloocta[4,5]thieno[3,2 e] 1,2,4 triazolo[4,3 c]pyrimidineen_US
dc.subject5 (3 pyridyl) 3 sulfanyl 8,9,10,11,12,13 hexahydrocycloocta [4,5]thieno[3,2 e] 1,2,4 triazolo[4,3 c]pyrimidineen_US
dc.subjectantineoplastic agenten_US
dc.subjectpyrimidine derivativeen_US
dc.subjectthieno[2,3 d]pyrimidine derivativeen_US
dc.subjectthieno[3,2 e] triazolo [4,3 c]pyrimidine derivativeen_US
dc.subjectunclassified drugen_US
dc.subjectantineoplastic agenten_US
dc.subjectpyrimidine derivativeen_US
dc.subjectthieno(2,3-d)pyrimidineen_US
dc.subjectthieno(3,2-e)triazolo(4,3-c)pyrimidineen_US
dc.subjecttriazole derivativeen_US
dc.subjectantineoplastic activityen_US
dc.subjectapoptosisen_US
dc.subjectArticleen_US
dc.subjectbreast cancer cell lineen_US
dc.subjectcancer cell lineen_US
dc.subjectcancer inhibitionen_US
dc.subjectcell cycle arresten_US
dc.subjectcell cycle progressionen_US
dc.subjectcentral nervous system tumoren_US
dc.subjectcolon canceren_US
dc.subjectdrug structureen_US
dc.subjectdrug synthesisen_US
dc.subjectG2 phase cell cycle checkpointen_US
dc.subjecthumanen_US
dc.subjecthuman cellen_US
dc.subjectleukemia cell lineen_US
dc.subjectM phase cell cycle checkpointen_US
dc.subjectmelanomaen_US
dc.subjectnon small cell lung canceren_US
dc.subjectovarian cancer cell lineen_US
dc.subjectprostate cancer cell lineen_US
dc.subjectproton nuclear magnetic resonanceen_US
dc.subjectrenal cancer cell lineen_US
dc.subjectapoptosisen_US
dc.subjectcell cycleen_US
dc.subjectcell proliferationen_US
dc.subjectchemical structureen_US
dc.subjectchemistryen_US
dc.subjectdose responseen_US
dc.subjectdrug effectsen_US
dc.subjectdrug screeningen_US
dc.subjectstructure activity relationen_US
dc.subjectsynthesisen_US
dc.subjecttumor cell lineen_US
dc.subjectAntineoplastic Agentsen_US
dc.subjectApoptosisen_US
dc.subjectCell Cycleen_US
dc.subjectCell Line, Tumoren_US
dc.subjectCell Proliferationen_US
dc.subjectDose-Response Relationship, Drugen_US
dc.subjectDrug Screening Assays, Antitumoren_US
dc.subjectHumansen_US
dc.subjectMolecular Structureen_US
dc.subjectPyrimidinesen_US
dc.subjectStructure-Activity Relationshipen_US
dc.subjectTriazolesen_US
dc.titleSynthesis, anticancer activity and effects on cell cycle profile and apoptosis of novel thieno[2,3-d]pyrimidine and thieno[3,2-e] triazolo[4,3-c]pyrimidine derivativesen_US
dc.typeArticleen_US
dcterms.isReferencedByKatada, J., Iijima, K., Muramatsu, M., Takami, M., Yasuda, E., Hayashi, M., Hattori, M., Hayashi, Y., (1999) Bioorg. Med. Chem. Lett., 9, pp. 797-802; Gangjee, A., Qiu, Y., Kisliuk, R.L., (2004) J. Heterocycl. Chem., 41, pp. 941-946; Dai, Y., Guo, Y., Frey, R.R., Ji, Z., Curtin, M.L., Ahmed, A.A., Albert, D.H., Michaelides, M.R., (2005) J. Med. Chem., 48, pp. 6066-6083; Wang, Y.D., Johnson, S., Powell, D., McGinnis, J.P., Miranda, M., Rabindran, S.K., (2005) Bioorg. Med. Chem. Lett., 15, pp. 3763-3766; Jennings, L.D., Kincaid, S.L., Wang, Y.D., Krishnamurthy, G., Beyer, C.F., McGinnis, J.P., Miranda, M., Rabindran, S.K., (2005) Bioorg. Med. Chem. Lett., 15, pp. 4731-4735; Messinger, J., Hirvel�, L., Husen, B., Kangas, L., Koskimies, P., Pentika�nen, O., Saarenketo, P., Thole, H., (2006) Mol. Cell. Endocrinol., 248, pp. 192-198; Amr, A.E., Mohamed, A.M., Mohamed, S.F., Abdel-Hafez, N.A., Hammam, A.G., (2006) Bioorg. Med. Chem., 14, pp. 5481-5488; Horiuchi, T., Chiba, J., Uoto, K., Soga, T., (2009) Bioorg. Med. Chem. Lett., 19, pp. 305-308; Horiuchi, T., Nagata, M., Kitagawa, M., Akahane, K., Uoto, K., (2009) Bioorg. Med. Chem. Lett., 17, pp. 7850-7860; Rheault, T.R., Caferro, T.R., Dickerson, S.H., Donaldson, K.H., Gaul, M.D., Goetz, A.S., Mullin, R.J., Uehling, D.E., (2009) Bioorg. Med. Chem. Lett., 19, pp. 817-820; Kemnitzer, W., Sirisoms, N., May, C., Tseng, B., Drewe, J., Cai, S.X., (2009) Bioorg. Med. Chem. Lett., 19, pp. 3536-3540; P�deboscq, S., Gravier, D., Casadebaig, F., Hou, G., Gissot, A., De Giorgi, F., Ichas, F., Pometan, J.P., (2010) Eur. J. Med. Chem., 45, pp. 2473-2479; Aponte, J.C., Vaisberg, A.J., Castillo, D., Gonzalez, G., Estevez, Y., Arevalo, J., Quiliano, M., Hammonda, G.B., (2010) Bioorg. Med. Chem., 18, pp. 2880-2886; Golub, A.G., Bdzohla, V.G., Briukhovetska, N.V., Balanda, A.O., Kukharenko, O.P., Kotey, I.M., Ostrynska, O.V., Yarmoluk, S.M., (2011) Eur. J. Med. Chem., 46, pp. 870-876; Lou, J., Liu, Z., Li, Y., Zhou, M., Zhang, Z., Zheng, S., Wang, R., Li, J., (2011) Bioorg. Med. Chem. Lett., 21, pp. 6662-6666; Zhao, A., Gao, X., Wang, Y., Ai, J., Wang, Y., Chen, Y., Geng, M., Zhang, A., (2011) Bioorg. Med. Chem., 19, pp. 3906-3918; Becker, T., Sellmer, A., Eichhorn, E., Pongratz, H., Sch�chtele, C., Totzke, F., Kelter, G., Mhboobi, S., (2012) Bioorg. Med. Chem., 20, pp. 125-136; Kandeel, M.M., Mounir, A.A., Refaat, H.M., Kassab, A.E., (2012) J. Chem. Res., 36, pp. 105-110. , 2; Kandeel, M.M., Mounir, A.A., Refaat, H.M., Kassab, A.E., (2012) J. Chem. Res., 36, pp. 266-275. , 5; Kandeel, M.M., Mounir, A.A., Refaat, H.M., Kassab, A.E., (2012) Int. J. Pharm. Pharm. Sci., 4, pp. 438-448. , 3; Wakeling, A.E., Guy, S.P., Woodburn, J.R., Ashton, S.E., Curry, B.J., Barker, A.J., Gibson, K.H., (2002) Cancer Res., 62, pp. 5749-5754; Moyer, J.D., Barbacci, E.G., Iwata, K.K., Arnold, L., Boman, B., Cunningham, A., Diorio, C., Miller, P., (1997) Cancer Res., 57, pp. 4838-4848; Deangelo, D.J., Stone, R.M., Heany, M.L., Nimer, S.D., Paquette, R.L., Klisovic, R.B., Caligiuri, M.A., Heinrich, M.C., (2006) Blood, 108, pp. 3674-3681; Abaas, S.E., Abdel Gawad, N.M., Georg, R.F., Akar, Y.A., (2013) Eur. J. Med. Chem., 56, pp. 195-204; Heiba, H.I., Ragab, F.A., Noaman, E., Ghorab, M.M., Galal, M., (2006) Arzneim. Forsch., 56, pp. 593-599; Al-Taisan, K.M., Al-Hazimi, H.M.A., Al-Shihry, S.S., (2010) Molecules, 15, pp. 3932-3957; Kassab, A.E., Gedawy, E.M., (2013) Eur. J. Med. Chem., 63, pp. 224-230; Arya, V.P., (1972) Indian J. Chem., 10, pp. 1141-1150; Alley, M.C., Scudiero, D.A., Monks, P.A., Hursey, M.L., Fine, M.J., Czerwinski, D.L., Abbott, B.J., Boyd, M.R., (1988) Cancer Res., 48, pp. 589-601; Grever, M.R., Schepartz, S.A., Chabner, B.A., (1992) Semin. Oncol., 19, pp. 622-638. , 6; Boyd, M.R., Paull, K.D., (1995) Drug Dev. Res., 34, pp. 91-109
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: