I-131 doping of silver nanoparticles platform for tumor theranosis guided drug delivery
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Sakr T.M. | |
dc.contributor.author | Khowessah O.M. | |
dc.contributor.author | Motaleb M.A. | |
dc.contributor.author | Abd El-Bary A. | |
dc.contributor.author | El-Kolaly M.T. | |
dc.contributor.author | Swidan M.M. | |
dc.contributor.other | Radioactive Isotopes and Generator Department | |
dc.contributor.other | Hot Labs Center | |
dc.contributor.other | Egyptian Atomic Energy Authority | |
dc.contributor.other | PO13759 | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Pharmaceutical Chemistry Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Modern Sciences and Arts University | |
dc.contributor.other | 6th October City | |
dc.contributor.other | Egypt; Pharmaceutics and Industrial Pharmacy Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Cairo University | |
dc.contributor.other | PO11562 | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Labeled Compounds Department | |
dc.contributor.other | Hot Labs Center | |
dc.contributor.other | Egyptian Atomic Energy Authority | |
dc.contributor.other | PO13759 | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:40:51Z | |
dc.date.available | 2020-01-09T20:40:51Z | |
dc.date.issued | 2018 | |
dc.description | Scopus | |
dc.description | MSA Google Scholar | |
dc.description.abstract | Nanotechnology may be applied in medicine where the utilization of nanoparticles (?100 nm) for the delivery and targeting of theranostic agents is at the forefront of projects in cancer nano-science. This study points a novel one step synthesis approach to build up polyethylene glycol capped silver nanoparticles doped with I-131 radionuclide (131I-doped Ag-PEG NPs). The formula was prepared with average hydrodynamic size 21 nm, zeta potential � 25 mV, radiolabeling yield 98 � 0.76%, and showed good in-vitro stability in saline and mice serum. The in-vitro cytotoxicity study of cold Ag-PEG NPs formula as a drug carrier vehicle showed no cytotoxic effect on normal cells (WI-38 cells) at a concentration below 3 ?L/104 cells. The in-vivo biodistribution pattern of 131I-doped Ag-PEG NPs in solid tumor bearing mice showed high radioactivity accumulation in tumor tissues with maximum uptake of 35.43 � 1.12 and 63.8 � 1.3% ID/g at 60 and 15 min post intravenous (I.V.) and intratumoral injection (I.T.), respectively. Great potential of T/NT ratios were obtained throughout the experimental time points with maximum ratios 45.23 � 0.65 and 92.46 � 1.02 at 60 and 15 min post I.V. and I.T. injection, respectively. Thus, 131I-doped Ag-PEG NPs formulation could be displayed as a great potential tumor nano-sized theranostic probe. � 2018 Elsevier B.V. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=21331&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1016/j.ejps.2018.06.029 | |
dc.identifier.doi | PubMed ID 29981892 | |
dc.identifier.issn | 9280987 | |
dc.identifier.other | https://doi.org/10.1016/j.ejps.2018.06.029 | |
dc.identifier.other | PubMed ID 29981892 | |
dc.identifier.uri | https://t.ly/j67nm | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.relation.ispartofseries | European Journal of Pharmaceutical Sciences | |
dc.relation.ispartofseries | 122 | |
dc.subject | October University for Modern Sciences and Arts | |
dc.subject | University for Modern Sciences and Arts | |
dc.subject | MSA University | |
dc.subject | جامعة أكتوبر للعلوم الحديثة والآداب | |
dc.subject | And nano-sized radiopharmaceutical | en_US |
dc.subject | Chelator free radiolabeling | en_US |
dc.subject | Radiochemical doping | en_US |
dc.subject | Silver nanoparticles | en_US |
dc.subject | Theranostics | en_US |
dc.subject | Tumor delivery | en_US |
dc.subject | iodine 131 | en_US |
dc.subject | macrogol | en_US |
dc.subject | silver nanoparticle | en_US |
dc.subject | Iodine-131 | en_US |
dc.subject | metal nanoparticle | en_US |
dc.subject | radioactive iodine | en_US |
dc.subject | silver | en_US |
dc.subject | animal cell | en_US |
dc.subject | animal experiment | en_US |
dc.subject | animal model | en_US |
dc.subject | animal tissue | en_US |
dc.subject | Article | en_US |
dc.subject | cancer chemotherapy | en_US |
dc.subject | cell viability | en_US |
dc.subject | controlled study | en_US |
dc.subject | cytotoxicity | en_US |
dc.subject | doping | en_US |
dc.subject | drug delivery system | en_US |
dc.subject | Fourier transform infrared spectroscopy | en_US |
dc.subject | human | en_US |
dc.subject | human cell | en_US |
dc.subject | in vitro study | en_US |
dc.subject | in vivo study | en_US |
dc.subject | isotope labeling | en_US |
dc.subject | macrophage | en_US |
dc.subject | male | en_US |
dc.subject | mouse | en_US |
dc.subject | nanoencapsulation | en_US |
dc.subject | nanotechnology | en_US |
dc.subject | nonhuman | en_US |
dc.subject | photon correlation spectroscopy | en_US |
dc.subject | priority journal | en_US |
dc.subject | single drug dose | en_US |
dc.subject | solid malignant neoplasm | en_US |
dc.subject | surface plasmon resonance | en_US |
dc.subject | theranostic nanomedicine | en_US |
dc.subject | transmission electron microscopy | en_US |
dc.subject | ultraviolet visible spectroscopy | en_US |
dc.subject | WI-38 cell line | en_US |
dc.subject | zeta potential | en_US |
dc.subject | animal | en_US |
dc.subject | cell line | en_US |
dc.subject | cell survival | en_US |
dc.subject | chemistry | en_US |
dc.subject | drug effect | en_US |
dc.subject | drug release | en_US |
dc.subject | drug stability | en_US |
dc.subject | metabolism | en_US |
dc.subject | sarcoma | en_US |
dc.subject | theranostic nanomedicine | en_US |
dc.subject | tissue distribution | en_US |
dc.subject | Animals | en_US |
dc.subject | Cell Line | en_US |
dc.subject | Cell Survival | en_US |
dc.subject | Drug Delivery Systems | en_US |
dc.subject | Drug Liberation | en_US |
dc.subject | Drug Stability | en_US |
dc.subject | Humans | en_US |
dc.subject | Iodine Radioisotopes | en_US |
dc.subject | Male | en_US |
dc.subject | Metal Nanoparticles | en_US |
dc.subject | Mice | en_US |
dc.subject | Sarcoma | en_US |
dc.subject | Silver | en_US |
dc.subject | Theranostic Nanomedicine | en_US |
dc.subject | Tissue Distribution | en_US |
dc.title | I-131 doping of silver nanoparticles platform for tumor theranosis guided drug delivery | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Abouhussein, D.M.N., Khattab, A., Bayoumi, N.A., Mahmoud, A.F., Sakr, T.M., Brain targetted rivastigmine mucoadhesive thermosensitive in situ gel: optimization, in vitro evaluation, radio-labelling, in vivo pharmacokinetics and biosdistribution (2018) J. Drug Delivery Sci. Technol., 43, pp. 129-140; Ahn, B.C., Personalized medicine based on theranostic radioiodine molecular imaging for differentiated thyroid cancer (2016) Biomed. Res. Int., 2016, p. 1680464; Al-Wabli, R.I., Sakr, T.M.M.H., Khedr, M.A., Selim, A.A., El-Rahman, M.A.E.-M.A., Zaghary, W.A., Platelet-12 lipoxygenase targeting via a newly synthesized curcumin derivative radiolabeled with technetium-99m (2016) Chem. Cent. J., 10, p. 73; Antonya, J.J., Sivalingamb, S., Sivaa, D., Comparative evaluation of antibacterial activity of silver nanoparticles synthesized using Rhizophora apiculata and glucose (2011) Colloids Surf. B Biointerfaces, 88, pp. 134-140; Assadi, M., Afrasiabi, K., Nabipour, I., Seyedabadi, M., Nanotechnology and nuclear medicine; research and preclinical applications (2011) Hell. J. Nucl. Med., 14 (2), pp. 149-159; Banerjee, S., Pillai, M.R., Ramamoorthy, N., Evolution of Tc-99m in diagnostic radiopharmaceuticals (2001) Semin. Nucl. Med., 31, pp. 260-277; Bao, A., Goins, B., Klipper, R., Negrete, G., Phillips, W.T., Direct 99mTc labeling of pegylated liposomal doxorubicin (Doxil) for pharmacokinetic and non-invasive imaging studies (2004) J. Pharmacol. Exp. Ther., 308, pp. 419-425; Dziendzikowska, K., Gromadzka, J., Lankoff, A., Oczkowski, M., Krawczynska, A., Chwastowska, J., Sadowska, M., Kruszewski, M., Time-dependent biodistribution and excretion of silver nanoparticles in male Wistar rats (2012) J. Appl. Toxicol., 32 (11), pp. 920-928; Goel, S., Chen, F., Ehlerding, E.B., Cai, W., Intrinsically radiolabeled nanoparticles: an emerging paradigm (2014) Small, 10 (19), pp. 3825-3830; Gupta, K., Jana, P.C., Meikap, A.K., Optical and electrical transport properties of polyaniline-silver nanocomposites (2010) Synth. Met., 160, pp. 1566-1573; Hamoudeh, M., Kamleh, M.A., Diab, R., Fessi, H., Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer (2008) Adv. Drug Deliv. Rev., 60 (12), pp. 1329-1346; Hou, Y., Liu, Y., Chen, Z., Gu, N., Wang, J., Manufacture of IRDye800CW-coupled Fe3O4 nanoparticles and their applications in cell labeling and in vivo imaging (2010) J. Nanobiotechnol., 8, p. 25; Klein, J., Probing the interactions of proteins and nanoparticles (2007) Proc. Natl. Acad. Sci. U. S. A., 104 (7), pp. 2029-2030; Mirshojaei, S.F., Ahmadi, A., Avila, E.M., Reynoso, M.O., Perez, H.R., Radiolabelled nanoparticles: novel classification of radiopharmaceuticals for molecular imaging of cancer (2016) J. Drug Target., 24 (2), p. 91; Mohamed, K.O., Nissan, Y.M., El-Malah, A.A., Ahmed, W.A., Ibrahim, D.M., Sakr, T.M., Motaleb, M.A., Design, synthesis and biological evaluation of some novel sulfonamide derivatives as apoptotic agents (2017) Eur. J. Med. Chem., 135, pp. 424-433; Owens, D.E., Peppas, N.A., Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles (2006) Int. J. Pharm., 307 (1), pp. 93-102; Parveen, S., Misra, R., Sahoo, S.K., Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging (2012) Nanomedicine, 8 (2), pp. 147-166; Pratt, E.C., Shaffer, T.M., Grimm, J., Nanoparticles and radiotracers: advances toward radio-nanomedicine (2016) Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 8 (6), pp. 872-890; Radovic, M., Calatayud, M.P., Goya, G.F., Ibarra, M.R., Antic, B., Spasojevic, V., Nikolic, N., Vranjes, D.S., Preparation and in vivo evaluation of multifunctional 90Y-labeled magnetic nanoparticles designed for cancer therapy (2015) J. Biomed. Mater. Res. A, 103 (1), pp. 126-134; Sakr, T.M., Khedr, M.A., Rashed, H.M., Mohamed, M.E., In silico-based repositioning of phosphinothricin as a novel technetium-99m imaging probe with potential anticancer activity (2018) Molecules, 23 (2), p. 496; Sanad, M.H., Sakr, T.M., Walaa, H.A., Marzook, E.A., In silico study and biological evaluation of 99mTc-tricabonyl oxiracetam as a selective imaging probe for AMPA receptors (2017) J. Radioanal. Nucl. Chem., 314 (30), pp. 1505-1515; Shameli, K., Ahmad, M.B., Jazayeri, S.D., Sedaghat, S., Shabanzadeh, P., Jahangirian, H., Mahdavi, M., Abdollahi, Y., Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method (2012) Int. J. Mol. Sci., 13 (6), pp. 6639-6650; Sheikh, A., Polack, B., Rodriguez, Y., Kuker, R., Nuclear molecular and theranostic imaging for differentiated thyroid cancer (2017) Mol. Imaging Radionuclide Ther., 26 (1), pp. 50-65; Swidan, M.M., Sakr, T.M., Motaleb, M.A., Abd El-Bary, A., El-Kolaly, M.T., Radioiodinated acebutolol as a new highly selective radiotracer for myocardial perfusion imaging (2014) J. Label. Compd. Radiopharm., 57 (10), pp. 593-599; Swidan, M.M., Sakr, T.M., Motaleb, M.A., Abd El-Bary, A., El-Kolaly, M.T., Preliminary assessment of radioiodinated fenoterol and reproterol as potential scintigraphic agents for lung imaging (2015) J. Radioanal. Nucl. Chem., 303 (1), pp. 531-539; Thakor, A.S., Gambhir, S.S., Nanooncology: the future of cancer diagnosis and therapy (2013) CA Cancer J. Clin., 63, pp. 395-418; Wall, M.A., Shaffer, T.M., Harmsen, S., Tschaharganeh, D.F., Huang, C.H., Lowe, S.W., Drain, C.M., Kircher, M.F., Chelator-free radiolabeling of SERRS nanoparticles for whole-body PET and intraoperative Raman imaging (2017) Theranostics, 7 (12), pp. 3068-3077; Zhao, J., Zhou, M., Li, C., Synthetic nanoparticles for delivery of radioisotopes and radiosensitizers in cancer therapy (2016) Cancer Nanotechnol., 7 (1), p. 9; Zielinska, A., Skwarek, E., Adriana, Z., Maria, G., Hupka, J., Preparation of silver nanoparticles with controlled particle size (2009) Procedia Chem., 1 (2), pp. 1560-1566 | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_256.png
- Size:
- 6.31 KB
- Format:
- Portable Network Graphics
- Description: