I-131 doping of silver nanoparticles platform for tumor theranosis guided drug delivery

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorSakr T.M.
dc.contributor.authorKhowessah O.M.
dc.contributor.authorMotaleb M.A.
dc.contributor.authorAbd El-Bary A.
dc.contributor.authorEl-Kolaly M.T.
dc.contributor.authorSwidan M.M.
dc.contributor.otherRadioactive Isotopes and Generator Department
dc.contributor.otherHot Labs Center
dc.contributor.otherEgyptian Atomic Energy Authority
dc.contributor.otherPO13759
dc.contributor.otherCairo
dc.contributor.otherEgypt; Pharmaceutical Chemistry Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherModern Sciences and Arts University
dc.contributor.other6th October City
dc.contributor.otherEgypt; Pharmaceutics and Industrial Pharmacy Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherCairo University
dc.contributor.otherPO11562
dc.contributor.otherCairo
dc.contributor.otherEgypt; Labeled Compounds Department
dc.contributor.otherHot Labs Center
dc.contributor.otherEgyptian Atomic Energy Authority
dc.contributor.otherPO13759
dc.contributor.otherCairo
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:51Z
dc.date.available2020-01-09T20:40:51Z
dc.date.issued2018
dc.descriptionScopus
dc.descriptionMSA Google Scholar
dc.description.abstractNanotechnology may be applied in medicine where the utilization of nanoparticles (?100 nm) for the delivery and targeting of theranostic agents is at the forefront of projects in cancer nano-science. This study points a novel one step synthesis approach to build up polyethylene glycol capped silver nanoparticles doped with I-131 radionuclide (131I-doped Ag-PEG NPs). The formula was prepared with average hydrodynamic size 21 nm, zeta potential � 25 mV, radiolabeling yield 98 � 0.76%, and showed good in-vitro stability in saline and mice serum. The in-vitro cytotoxicity study of cold Ag-PEG NPs formula as a drug carrier vehicle showed no cytotoxic effect on normal cells (WI-38 cells) at a concentration below 3 ?L/104 cells. The in-vivo biodistribution pattern of 131I-doped Ag-PEG NPs in solid tumor bearing mice showed high radioactivity accumulation in tumor tissues with maximum uptake of 35.43 � 1.12 and 63.8 � 1.3% ID/g at 60 and 15 min post intravenous (I.V.) and intratumoral injection (I.T.), respectively. Great potential of T/NT ratios were obtained throughout the experimental time points with maximum ratios 45.23 � 0.65 and 92.46 � 1.02 at 60 and 15 min post I.V. and I.T. injection, respectively. Thus, 131I-doped Ag-PEG NPs formulation could be displayed as a great potential tumor nano-sized theranostic probe. � 2018 Elsevier B.V.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=21331&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1016/j.ejps.2018.06.029
dc.identifier.doiPubMed ID 29981892
dc.identifier.issn9280987
dc.identifier.otherhttps://doi.org/10.1016/j.ejps.2018.06.029
dc.identifier.otherPubMed ID 29981892
dc.identifier.urihttps://t.ly/j67nm
dc.language.isoEnglishen_US
dc.publisherElsevier B.V.en_US
dc.relation.ispartofseriesEuropean Journal of Pharmaceutical Sciences
dc.relation.ispartofseries122
dc.subjectOctober University for Modern Sciences and Arts
dc.subjectUniversity for Modern Sciences and Arts
dc.subjectMSA University
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectAnd nano-sized radiopharmaceuticalen_US
dc.subjectChelator free radiolabelingen_US
dc.subjectRadiochemical dopingen_US
dc.subjectSilver nanoparticlesen_US
dc.subjectTheranosticsen_US
dc.subjectTumor deliveryen_US
dc.subjectiodine 131en_US
dc.subjectmacrogolen_US
dc.subjectsilver nanoparticleen_US
dc.subjectIodine-131en_US
dc.subjectmetal nanoparticleen_US
dc.subjectradioactive iodineen_US
dc.subjectsilveren_US
dc.subjectanimal cellen_US
dc.subjectanimal experimenten_US
dc.subjectanimal modelen_US
dc.subjectanimal tissueen_US
dc.subjectArticleen_US
dc.subjectcancer chemotherapyen_US
dc.subjectcell viabilityen_US
dc.subjectcontrolled studyen_US
dc.subjectcytotoxicityen_US
dc.subjectdopingen_US
dc.subjectdrug delivery systemen_US
dc.subjectFourier transform infrared spectroscopyen_US
dc.subjecthumanen_US
dc.subjecthuman cellen_US
dc.subjectin vitro studyen_US
dc.subjectin vivo studyen_US
dc.subjectisotope labelingen_US
dc.subjectmacrophageen_US
dc.subjectmaleen_US
dc.subjectmouseen_US
dc.subjectnanoencapsulationen_US
dc.subjectnanotechnologyen_US
dc.subjectnonhumanen_US
dc.subjectphoton correlation spectroscopyen_US
dc.subjectpriority journalen_US
dc.subjectsingle drug doseen_US
dc.subjectsolid malignant neoplasmen_US
dc.subjectsurface plasmon resonanceen_US
dc.subjecttheranostic nanomedicineen_US
dc.subjecttransmission electron microscopyen_US
dc.subjectultraviolet visible spectroscopyen_US
dc.subjectWI-38 cell lineen_US
dc.subjectzeta potentialen_US
dc.subjectanimalen_US
dc.subjectcell lineen_US
dc.subjectcell survivalen_US
dc.subjectchemistryen_US
dc.subjectdrug effecten_US
dc.subjectdrug releaseen_US
dc.subjectdrug stabilityen_US
dc.subjectmetabolismen_US
dc.subjectsarcomaen_US
dc.subjecttheranostic nanomedicineen_US
dc.subjecttissue distributionen_US
dc.subjectAnimalsen_US
dc.subjectCell Lineen_US
dc.subjectCell Survivalen_US
dc.subjectDrug Delivery Systemsen_US
dc.subjectDrug Liberationen_US
dc.subjectDrug Stabilityen_US
dc.subjectHumansen_US
dc.subjectIodine Radioisotopesen_US
dc.subjectMaleen_US
dc.subjectMetal Nanoparticlesen_US
dc.subjectMiceen_US
dc.subjectSarcomaen_US
dc.subjectSilveren_US
dc.subjectTheranostic Nanomedicineen_US
dc.subjectTissue Distributionen_US
dc.titleI-131 doping of silver nanoparticles platform for tumor theranosis guided drug deliveryen_US
dc.typeArticleen_US
dcterms.isReferencedByAbouhussein, D.M.N., Khattab, A., Bayoumi, N.A., Mahmoud, A.F., Sakr, T.M., Brain targetted rivastigmine mucoadhesive thermosensitive in situ gel: optimization, in vitro evaluation, radio-labelling, in vivo pharmacokinetics and biosdistribution (2018) J. Drug Delivery Sci. Technol., 43, pp. 129-140; Ahn, B.C., Personalized medicine based on theranostic radioiodine molecular imaging for differentiated thyroid cancer (2016) Biomed. Res. Int., 2016, p. 1680464; Al-Wabli, R.I., Sakr, T.M.M.H., Khedr, M.A., Selim, A.A., El-Rahman, M.A.E.-M.A., Zaghary, W.A., Platelet-12 lipoxygenase targeting via a newly synthesized curcumin derivative radiolabeled with technetium-99m (2016) Chem. Cent. J., 10, p. 73; Antonya, J.J., Sivalingamb, S., Sivaa, D., Comparative evaluation of antibacterial activity of silver nanoparticles synthesized using Rhizophora apiculata and glucose (2011) Colloids Surf. B Biointerfaces, 88, pp. 134-140; Assadi, M., Afrasiabi, K., Nabipour, I., Seyedabadi, M., Nanotechnology and nuclear medicine; research and preclinical applications (2011) Hell. J. Nucl. Med., 14 (2), pp. 149-159; Banerjee, S., Pillai, M.R., Ramamoorthy, N., Evolution of Tc-99m in diagnostic radiopharmaceuticals (2001) Semin. Nucl. Med., 31, pp. 260-277; Bao, A., Goins, B., Klipper, R., Negrete, G., Phillips, W.T., Direct 99mTc labeling of pegylated liposomal doxorubicin (Doxil) for pharmacokinetic and non-invasive imaging studies (2004) J. Pharmacol. Exp. Ther., 308, pp. 419-425; Dziendzikowska, K., Gromadzka, J., Lankoff, A., Oczkowski, M., Krawczynska, A., Chwastowska, J., Sadowska, M., Kruszewski, M., Time-dependent biodistribution and excretion of silver nanoparticles in male Wistar rats (2012) J. Appl. Toxicol., 32 (11), pp. 920-928; Goel, S., Chen, F., Ehlerding, E.B., Cai, W., Intrinsically radiolabeled nanoparticles: an emerging paradigm (2014) Small, 10 (19), pp. 3825-3830; Gupta, K., Jana, P.C., Meikap, A.K., Optical and electrical transport properties of polyaniline-silver nanocomposites (2010) Synth. Met., 160, pp. 1566-1573; Hamoudeh, M., Kamleh, M.A., Diab, R., Fessi, H., Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer (2008) Adv. Drug Deliv. Rev., 60 (12), pp. 1329-1346; Hou, Y., Liu, Y., Chen, Z., Gu, N., Wang, J., Manufacture of IRDye800CW-coupled Fe3O4 nanoparticles and their applications in cell labeling and in vivo imaging (2010) J. Nanobiotechnol., 8, p. 25; Klein, J., Probing the interactions of proteins and nanoparticles (2007) Proc. Natl. Acad. Sci. U. S. A., 104 (7), pp. 2029-2030; Mirshojaei, S.F., Ahmadi, A., Avila, E.M., Reynoso, M.O., Perez, H.R., Radiolabelled nanoparticles: novel classification of radiopharmaceuticals for molecular imaging of cancer (2016) J. Drug Target., 24 (2), p. 91; Mohamed, K.O., Nissan, Y.M., El-Malah, A.A., Ahmed, W.A., Ibrahim, D.M., Sakr, T.M., Motaleb, M.A., Design, synthesis and biological evaluation of some novel sulfonamide derivatives as apoptotic agents (2017) Eur. J. Med. Chem., 135, pp. 424-433; Owens, D.E., Peppas, N.A., Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles (2006) Int. J. Pharm., 307 (1), pp. 93-102; Parveen, S., Misra, R., Sahoo, S.K., Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging (2012) Nanomedicine, 8 (2), pp. 147-166; Pratt, E.C., Shaffer, T.M., Grimm, J., Nanoparticles and radiotracers: advances toward radio-nanomedicine (2016) Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 8 (6), pp. 872-890; Radovic, M., Calatayud, M.P., Goya, G.F., Ibarra, M.R., Antic, B., Spasojevic, V., Nikolic, N., Vranjes, D.S., Preparation and in vivo evaluation of multifunctional 90Y-labeled magnetic nanoparticles designed for cancer therapy (2015) J. Biomed. Mater. Res. A, 103 (1), pp. 126-134; Sakr, T.M., Khedr, M.A., Rashed, H.M., Mohamed, M.E., In silico-based repositioning of phosphinothricin as a novel technetium-99m imaging probe with potential anticancer activity (2018) Molecules, 23 (2), p. 496; Sanad, M.H., Sakr, T.M., Walaa, H.A., Marzook, E.A., In silico study and biological evaluation of 99mTc-tricabonyl oxiracetam as a selective imaging probe for AMPA receptors (2017) J. Radioanal. Nucl. Chem., 314 (30), pp. 1505-1515; Shameli, K., Ahmad, M.B., Jazayeri, S.D., Sedaghat, S., Shabanzadeh, P., Jahangirian, H., Mahdavi, M., Abdollahi, Y., Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method (2012) Int. J. Mol. Sci., 13 (6), pp. 6639-6650; Sheikh, A., Polack, B., Rodriguez, Y., Kuker, R., Nuclear molecular and theranostic imaging for differentiated thyroid cancer (2017) Mol. Imaging Radionuclide Ther., 26 (1), pp. 50-65; Swidan, M.M., Sakr, T.M., Motaleb, M.A., Abd El-Bary, A., El-Kolaly, M.T., Radioiodinated acebutolol as a new highly selective radiotracer for myocardial perfusion imaging (2014) J. Label. Compd. Radiopharm., 57 (10), pp. 593-599; Swidan, M.M., Sakr, T.M., Motaleb, M.A., Abd El-Bary, A., El-Kolaly, M.T., Preliminary assessment of radioiodinated fenoterol and reproterol as potential scintigraphic agents for lung imaging (2015) J. Radioanal. Nucl. Chem., 303 (1), pp. 531-539; Thakor, A.S., Gambhir, S.S., Nanooncology: the future of cancer diagnosis and therapy (2013) CA Cancer J. Clin., 63, pp. 395-418; Wall, M.A., Shaffer, T.M., Harmsen, S., Tschaharganeh, D.F., Huang, C.H., Lowe, S.W., Drain, C.M., Kircher, M.F., Chelator-free radiolabeling of SERRS nanoparticles for whole-body PET and intraoperative Raman imaging (2017) Theranostics, 7 (12), pp. 3068-3077; Zhao, J., Zhou, M., Li, C., Synthetic nanoparticles for delivery of radioisotopes and radiosensitizers in cancer therapy (2016) Cancer Nanotechnol., 7 (1), p. 9; Zielinska, A., Skwarek, E., Adriana, Z., Maria, G., Hupka, J., Preparation of silver nanoparticles with controlled particle size (2009) Procedia Chem., 1 (2), pp. 1560-1566
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: