Antagonistic activity of lactobacillus isolates against salmonella typhi in vitro
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Abdel-Daim A. | |
dc.contributor.author | Hassouna N. | |
dc.contributor.author | Hafez M. | |
dc.contributor.author | Ashor M.S.A. | |
dc.contributor.author | Aboulwafa M.M. | |
dc.contributor.other | Department of Microbiology and Immunology | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Modern Sciences and Arts University | |
dc.contributor.other | Cairo 12611 | |
dc.contributor.other | Egypt; Department of Microbiology and Immunology | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Ain Shams University | |
dc.contributor.other | Al Khalifa Al Maamoun Street | |
dc.contributor.other | Abbassia | |
dc.contributor.other | Cairo 11566 | |
dc.contributor.other | Egypt; Department of Pharmaceutical Microbiology | |
dc.contributor.other | College of Pharmacy | |
dc.contributor.other | Taif University | |
dc.contributor.other | Saudi Arabia | |
dc.date.accessioned | 2020-01-09T20:42:22Z | |
dc.date.available | 2020-01-09T20:42:22Z | |
dc.date.issued | 2013 | |
dc.description | Scopus | |
dc.description.abstract | Background. Enteric fever is a global health problem, and rapidly developing resistance to various drugs makes the situation more alarming. The potential use of Lactobacillus to control typhoid fever represents a promising approach, as it may exert protective actions through various mechanisms. Methods. In this study, the probiotic potential and antagonistic activities of 32 Lactobacillus isolates against Salmonella typhi were evaluated. The antimicrobial activity of cell free supernatants of Lactobacillus isolates, interference of Lactobacillus isolates with the Salmonella adherence and invasion, cytoprotective effect of Lactobacillus isolates, and possibility of concurrent use of tested Lactobacillus isolates and antibiotics were evaluated by testing their susceptibilities to antimicrobial agents, and their oxygen tolerance was also examined. Results. The results revealed that twelve Lactobacillus isolates could protect against Salmonella typhi infection through interference with both its growth and its virulence properties, such as adherence, invasion, and cytotoxicity. These Lactobacillus isolates exhibited MIC values for ciprofloxacin higher than those of Salmonella typhi and oxygen tolerance and were identified as Lactobacillus plantarum. Conclusion. The tested Lactobacillus plantarum isolates can be introduced as potential novel candidates that have to be subjected for in vivo and application studies for treatment and control of typhoid fever. � 2013 Amira Abdel-Daim et al. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=21100230018&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1155/2013/680605 | |
dc.identifier.doi | PubMed ID 24191248 | |
dc.identifier.issn | 23146133 | |
dc.identifier.other | https://doi.org/10.1155/2013/680605 | |
dc.identifier.other | PubMed ID 24191248 | |
dc.identifier.uri | https://t.ly/xREJg | |
dc.language.iso | English | en_US |
dc.relation.ispartofseries | BioMed Research International | |
dc.relation.ispartofseries | 2013 | |
dc.subject | government intervention | |
dc.subject | economic independence | |
dc.subject | cross-country studies | |
dc.subject | composite indices | |
dc.subject | autarky | |
dc.subject | ciprofloxacin | en_US |
dc.subject | probiotic agent | en_US |
dc.subject | trypan blue | en_US |
dc.subject | antiinfective agent | en_US |
dc.subject | agar diffusion | en_US |
dc.subject | antibiotic sensitivity | en_US |
dc.subject | antimicrobial activity | en_US |
dc.subject | article | en_US |
dc.subject | bacterial cell | en_US |
dc.subject | bacterial count | en_US |
dc.subject | bacterial growth | en_US |
dc.subject | bacterial virulence | en_US |
dc.subject | bacterium adherence | en_US |
dc.subject | cell invasion | en_US |
dc.subject | cell protection | en_US |
dc.subject | colony forming unit | en_US |
dc.subject | controlled study | en_US |
dc.subject | cytotoxicity | en_US |
dc.subject | in vitro study | en_US |
dc.subject | in vivo study | en_US |
dc.subject | Lactobacillus | en_US |
dc.subject | Lactobacillus plantarum | en_US |
dc.subject | nonhuman | en_US |
dc.subject | Salmonella paratyphi | en_US |
dc.subject | Salmonella paratyphi B | en_US |
dc.subject | Salmonella typhi | en_US |
dc.subject | typhoid fever | en_US |
dc.subject | animal | en_US |
dc.subject | antibiosis | en_US |
dc.subject | chemistry | en_US |
dc.subject | Chlorocebus aethiops | en_US |
dc.subject | cytology | en_US |
dc.subject | growth, development and aging | en_US |
dc.subject | immunology | en_US |
dc.subject | microbiology | en_US |
dc.subject | physiology | en_US |
dc.subject | typhoid fever | en_US |
dc.subject | Vero cell line | en_US |
dc.subject | Animals | en_US |
dc.subject | Anti-Infective Agents | en_US |
dc.subject | Antibiosis | en_US |
dc.subject | Cercopithecus aethiops | en_US |
dc.subject | Lactobacillus | en_US |
dc.subject | Salmonella typhi | en_US |
dc.subject | Typhoid Fever | en_US |
dc.subject | Vero Cells | en_US |
dc.title | Antagonistic activity of lactobacillus isolates against salmonella typhi in vitro | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Srivastava, L., Aggarwal, P., Multidrug resistant Salmonella typhi in Delhi (1994) Indian Journal of Medical Microbiology, 12, pp. 102-105; Parry, C.M., Hein, T.T., Dougan, G., White, N.J., Farrar, J.J., Typhoid fever (2002) New England Journal of Medicine, 347 (22), pp. 1770-1782. , DOI 10.1056/NEJMra020201; Borriello, S.P., Hammes, W.P., Holzapfel, W., Marteau, P., Schrezenmeir, J., Vaara, M., Valtonen, V., Safety of probiotics that contain lactobacilli or bifidobacteria (2003) Clinical Infectious Diseases, 36 (6), pp. 775-780. , DOI 10.1086/368080; Ahrne, S., Nobaek, S., Jeppsson, B., Adlerberth, I., Wold, A.E., Molin, G., The normal Lactobacillus flora of healthy human rectal and oral mucosa (1998) Journal of Applied Microbiology, 85 (1), pp. 88-94. , DOI 10.1046/j.1365-2672.1998.00480.x; Andreu, A., Stapleton, A.E., Fennell, C.L., Hillier, S.L., Stamm, W.E., Hemagglutination, adherence, and surface properties of vaginal Lactobacillus species (1995) Journal of Infectious Diseases, 171 (5), pp. 1237-1243. , 2-s2.0-0028898827; Giorgi, A., Torriani, S., Dellaglio, F., Bo, G., Stola, E., Bernuzzi, L., Identification of vaginal lactobacilli from asymptomatic women (1987) Microbiologica, 10 (4), pp. 377-384. , 2-s2.0-0023433437; Holzapfel, W.H., Haberer, P., Snel, J., Schillinger, U., Huisin, T., Veld, J.H.J., Overview of gut flora and probiotics (1998) International Journal of Food Microbiology, 41 (2), pp. 85-101. , DOI 10.1016/S0168-1605(98)00044-0, PII S0168160598000440; Tannock, G.W., Analysis of the intestinal microflora: A renaissance (1999) Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 76 (1-4), pp. 265-278. , DOI 10.1023/A:1002038308506; Helander, I.M., Von Wright, A., Mattila-Sandholm, T.-M., Potential of lactic acid bacteria and novel antimicrobials against gram-negative bacteria (1997) Trends in Food Science and Technology, 8 (5), pp. 146-150. , DOI 10.1016/S0924-2244(97)01030-3, PII S0924224497010303; Magnusson, J., Strom, K., Roos, S., Sjogren, J., Schnurer, J., Broad and complex antifungal activity among environmental isolates of lactic acid bacteria (2003) FEMS Microbiology Letters, 219 (1), pp. 129-135. , DOI 10.1016/S0378-1097(02)01207-7; Servin, A.L., Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens (2004) FEMS Microbiology Reviews, 28 (4), pp. 405-440. , DOI 10.1016/j.femsre.2004.01.003, PII S0168644504000142; Valerio, F., Lavermicocca, P., Pascale, M., Visconti, A., Production of phenyllactic acid by lactic acid bacteria: An approach to the selection of strains contributing to food quality and preservation (2004) FEMS Microbiology Letters, 233 (2), pp. 289-295. , DOI 10.1016/j.femsle.2004.02.020, PII S0378109704001624; Arvola, T., Laiho, K., Torkkeli, S., Mykk�nen, H., Salminen, S., Maunula, L., Isolauri, E., Prophylactic Lactobacillus GG reduces antibiotic-associated diarrhea in children with respiratory infections: A randomized study (1999) Pediatrics, 104 (5). , 2-s2.0-0033229628; Canani, R.B., Cirillo, P., Terrin, G., Cesarano, L., Spagnuolo, M.I., De Vincenzo, A., Albano, F., Guarino, A., Probiotics for treatment of acute diarrhoea in children: Randomised clinical trial of five different preparations (2007) British Medical Journal, 335 (7615), pp. 340-342. , DOI 10.1136/bmj.39272.581736.55; Reid, G., Jass, J., Sebulsky, M.T., McCormick, J.K., Potential Uses of Probiotics in Clinical Practice (2003) Clinical Microbiology Reviews, 16 (4), pp. 658-672. , DOI 10.1128/CMR.16.4.658-672.2003; Abdel-Daim, A., Ashor, M., Hassouna, N., Hafez, M., Aboulwafa, M., Screening of Lactobacillus isolates for their probiotic potential (2012) Archives of Clinical Microbiology, 3 (5); Plotkowski, M.-C., Saliba, A.M., Pereira, S.H.M., Cervante, M.P., Bajolet-Laudinat, O., Pseudomonas aeruginosa selective adherence to and entry into human endothelial cells (1994) Infection and Immunity, 62 (12), pp. 5456-5463; Golowczyc, M.A., Mobili, P., Garrote, G.L., Abraham, A.G., De Antoni, G.L., Protective action of Lactobacillus kefir carrying S-layer protein against Salmonella enterica serovar Enteritidis (2007) International Journal of Food Microbiology, 118 (3), pp. 264-273. , DOI 10.1016/j.ijfoodmicro.2007.07.042, PII S0168160507003753; Fleiszig, S.M.J., Zaidi, T.S., Preston, M.J., Grout, M., Evans, D.J., Pier, G.B., Relationship between cytotoxicity and corneal epithelial cell invasion by clinical isolates of Pseudomonas aeruginosa (1996) Infection and Immunity, 64 (6), pp. 2288-2294; Schillinger, U., L�cke, F.K., Antibacterial activity of Lactobacillus sake isolated from meat (1989) Applied and Environmental Microbiology, 55 (8), pp. 1901-1906. , 2-s2.0-0024711247; Coconnier, M.-H., Lievin, V., Bernet-Camard, M.-F., Hudault, S., Servin, A.L., Antibacterial effect of the adhering human Lactobacillus acidophilus strain LB (1997) Antimicrobial Agents and Chemotherapy, 41 (5), pp. 1046-1052; Drago, L., Gismondo, M.R., Lombardi, A., De Haen, C., Gozzini, L., Inhibition of in vitro growth of enteropathogens by new Lactobacillus isolates of human intestinal origin (1997) FEMS Microbiology Letters, 153 (2), pp. 455-463. , DOI 10.1016/S0378-1097(97)00289-9, PII S0378109797002899; Henry, D.I., Henry, D.I., Broth microdilution MIC test (2007) Clinical Microbiology Procedure Handbook, 2. , Washington, DC, USA ASM Press; Andrews, J.M., Determination of minimum inhibitory concentrations (2001) Journal of Antimicrobial Chemotherapy, 48 (1), pp. 5-16. , 2-s2.0-0034924241; Mayrhofer, S., Domig, K.J., Mair, C., Zitz, U., Huys, G., Kneifel, W., Comparison of broth microdilution, Etest, and agar disk diffusion methods for antimicrobial susceptibility testing of Lactobacillus acidophilus group members (2008) Applied and Environmental Microbiology, 74 (12), pp. 3745-3748. , DOI 10.1128/AEM.02849-07; Talwalkar, A., Kailasapathy, K., Peiris, P., Arumugaswamy, R., Application of RBGR - A simple way for screening of oxygen tolerance in probiotic bacteria (2001) International Journal of Food Microbiology, 71 (2-3), pp. 245-248. , DOI 10.1016/S0168-1605(01)00563-3, PII S0168160501005633; Ouwehand, A.C., Salminen, S., Wright, A.V., Antimicrobial components from lactic acid bacteria (1998) Lactic Acid Bacteria Microbiology and Functional Aspects, pp. 139-159. , New York, NY, USA Dekker; De Vuyst, L., Vandamme, E.J., De Vuyst, L., Vandamme, E.J., Antimicrobial potential of lactic acid bacteria (1994) Bacteriocins of Lactic Acid Bacteria: Microbiology, Genetics and Applications, pp. 91-142. , London, UK Blackie; Hutt, P., Shchepetova, J., Loivukene, K., Kullisaar, T., Mikelsaar, M., Antagonistic activity of probiotic lactobacilli and bifidobacteria against entero- and uropathogens (2006) Journal of Applied Microbiology, 100 (6), pp. 1324-1332. , DOI 10.1111/j.1365-2672.2006.02857.x; Lin, C.K., Tsai, H.C., Lin, P.P., Tsen, H.Y., Tsai, C.C., Lactobacillus acidophilus LAP5 able to inhibit the Salmonella choleraesuis invasion to the human Caco-2 epithelial cell (2008) Anaerobe, 14 (5), pp. 251-255. , 10.1016/j.anaerobe.2008.07.003; Annuk, H., Shchepetova, J., Kullisaar, T., Songisepp, E., Zilmer, M., Mikelsaar, M., Characterization of intestinal lactobacilli as putative probiotic candidates (2003) Journal of Applied Microbiology, 94 (3), pp. 403-412. , DOI 10.1046/j.1365-2672.2003.01847.x; Ouwehand, A.C., Vesterlund, S., Salminen, S., Wright, A.V., Ouwehand, A.C., Antimicrobial components from lactic acid bacteria (2004) Lactic Acid Bacteria: Microbiological and Functional Aspects, pp. 375-395. , 3rd New York, NY, USA Dekker; De Keersmaecker, S.C.J., Verhoeven, T.L.A., Desair, J., Marchal, K., Vanderleyden, J., Nagy, I., Strong antimicrobial activity of Lactobacillus rhamnosus GG against Salmonella typhimurium is due to accumulation of lactic acid (2006) FEMS Microbiology Letters, 259 (1), pp. 89-96. , 2-s2.0-33646739322 10.1111/j.1574-6968.2006.00250.x; Fayol-Messaoudi, D., Berger, C.N., Coconnier-Polter, M.-H., Lievin-Le Moal, V., Servin, A.L., PH-, lactic acid-, and non-lactic acid-dependent activities of probiotic lactobacilli against Salmonella enterica serovar typhimurium (2005) Applied and Environmental Microbiology, 71 (10), pp. 6008-6013. , DOI 10.1128/AEM.71.10.6008-6013.2005; Cook, S.I., Sellin, J.H., Review article: Short chain fatty acids in health and disease (1998) Alimentary Pharmacology and Therapeutics, 12 (6), pp. 499-507. , DOI 10.1046/j.1365-2036.1998.00337.x; Millette, M., Luquet, F.M., Lacroix, M., In vitro growth control of selected pathogens by Lactobacillus acidophilus - And Lactobacillus casei -fermented milk (2007) Letters in Applied Microbiology, 44 (3), pp. 314-319. , 2-s2.0-33847054764 10.1111/j.1472-765X.2006.02060.x; Silva, M., Jacobus, N.V., Deneke, C., Gorbach, S.L., Antimicrobial substance from a human Lactobacillus strain (1987) Antimicrobial Agents and Chemotherapy, 31 (8), pp. 1231-1233; Rammelsberg, M., Radler, F., Antibacterial polypeptides of Lactobacillus species (1990) Journal of Applied Bacteriology, 69 (2), pp. 177-184; Lee, Y.-K., Puong, K.-Y., Ouwehand, A.C., Salminen, S., Displacement of bacterial pathogens from mucus and Caco-2 cell surface by lactobacilli (2003) Journal of Medical Microbiology, 52 (10), pp. 925-930. , DOI 10.1099/jmm.0.05009-0; Bernet-Camard, M.-F., Lievin, V., Brassart, D., Neeser, J.-R., Servin, A.L., Hudault, S., The human Lactobacillus acidophilus strain LA1 secretes a nonbacteriocin antibacterial subtance(s) active in vitro and in vivo (1997) Applied and Environmental Microbiology, 63 (7), pp. 2747-2753; Coconnier, M.-H., Lievin, V., Lorrot, M., Servin, A.L., Antagonistic activity of Lactobacillus acidophilus LB against intracellular Salmonella enterica serovar Typhimurium infecting human enterocyte-like Caco-2/TC-7 cells (2000) Applied and Environmental Microbiology, 66 (3), pp. 1152-1157. , DOI 10.1128/AEM.66.3.1152-1157.2000; Lievin, V., Peiffer, I., Hudault, S., Rochat, F., Brassart, D., Neeser, J.-R., Servin, A.L., Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity (2000) Gut, 47 (5), pp. 646-652. , 2-s2.0-0033762339 10.1136/gut.47.5.646; Moal, V.L.-L., Amsellem, R., Servin, A.L., Coconnier, M.-H., Lactobacillus acidophilus (strain LB) from the resident adult human gastrointestinal microflora exerts activity against brush border damage promoted by a diarrhoeagenic escherichia coli in human Enterocyte-like cells (2002) Gut, 50 (6), pp. 803-811. , DOI 10.1136/gut.50.6.803; Maragkoudakis, P.A., Zoumpopoulou, G., Miaris, C., Kalantzopoulos, G., Pot, B., Tsakalidou, E., Probiotic potential of Lactobacillus strains isolated from dairy products (2006) International Dairy Journal, 16 (3), pp. 189-199. , DOI 10.1016/j.idairyj.2005.02.009, PII S0958694605000816; Carlson, S.A., Jones, B.D., Inhibition of Salmonella typhimurium invasion by host cell expression of secreted bacterial invasion proteins (1998) Infection and Immunity, 66 (11), pp. 5295-5300; Coconnier-Polter, M.-H., Lievin-Le Moal, V., Servin, A.L., A Lactobacillus acidophilus strain of human gastrointestinal microbiota origin elicits killing of enterovirulent Salmonella enterica serovar typhimurium by triggering lethal bacterial membrane damage (2005) Applied and Environmental Microbiology, 71 (10), pp. 6115-6120. , DOI 10.1128/AEM.71.10.6115-6120.2005; Makras, L., Triantafyllou, V., Fayol-Messaoudi, D., Adriany, T., Zoumpopoulou, G., Tsakalidou, E., Servin, A., De Vuyst, L., Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar Typhimurium reveals a role for lactic acid and other inhibitory compounds (2006) Research in Microbiology, 157 (3), pp. 241-247. , 2-s2.0-33645035979 10.1016/j.resmic.2005.09.002; Parente, E., Ricciardi, A., Production, recovery and purification of bacteriocins from lactic acid bacteria (1999) Applied Microbiology and Biotechnology, 52 (5), pp. 628-638. , DOI 10.1007/s002530051570; Mastromarino, P., Brigidi, P., Macchia, S., Maggi, L., Pirovano, F., Trinchieri, V., Conte, U., Matteuzzi, D., Characterization and selection of vaginal Lactobacillus strains for the preparation of vaginal tablets (2002) Journal of Applied Microbiology, 93 (5), pp. 884-893. , DOI 10.1046/j.1365-2672.2002.01759.x; Burkholder, K.M., Bhunia, A.K., Salmonella enterica serovar Typhimurium adhesion and cytotoxicity during epithelial cell stress is reduced by Lactobacillus rhamnosus GG (2009) Gut Pathogens, 1. , article 14; Talwalkar, A., Kailasapathy, K., Metabolic and biochemical responses of probiotic bacteria to oxygen (2003) Journal of Dairy Science, 86 (8), pp. 2537-2546; Brunner, J.C., Spillman, H., Puhan, Z., Metabolism and survival of bifidobacteria in fermented milk during cold storage (1993) Milchwirtschaftliche-Forschung, 22, pp. 19-25; Klaver, F.A.M., Kingma, F., Weerkamp, A.H., Growth and survival of bifidobacteria in milk (1993) Neth.Milk Dairy J., 47 (3-4), pp. 151-164; Dave, R.I., Shah, N.P., Effectiveness of ascorbic acid as an oxygen scavenger in improving viability of probiotic bacteria in yoghurts made with commercial starter cultures (1997) International Dairy Journal, 7 (6-7), pp. 435-443. , DOI 10.1016/S0958-6946(97)00026-5, PII S0958694697000265; Archibald, F.S., Fridovich, I., Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria (1981) Journal of Bacteriology, 146 (3), pp. 928-936; Kim, W.S., Perl, L., Park, J.H., Tandianus, J.E., Dunn, N.W., Assessment of stress response of the probiotic Lactobacillus acidophilus (2001) Current Microbiology, 43 (5), pp. 346-350. , DOI 10.1007/s002840010314; De Vries, M.C., Vaughan, E.E., Kleerebezem, M., De Vos, W.M., Lactobacillus plantarum-survival, functional and potential probiotic properties in the human intestinal tract (2006) International Dairy Journal, 16 (9), pp. 1018-1028. , DOI 10.1016/j.idairyj.2005.09.003, PII S0958694605001809 | |
dcterms.source | Scopus |