Honey-based hydrogel: In vitro and comparative in vivo evaluation for burn wound healing

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorEl-Kased R.F.
dc.contributor.authorAmer R.I.
dc.contributor.authorAttia D.
dc.contributor.authorElmazar M.M.
dc.contributor.otherDepartment of Microbiology and Immunology
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherBritish University in Egypt
dc.contributor.otherBUE Cairo
dc.contributor.otherEgypt; Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy
dc.contributor.otherUniversity for Modern Sciences and Arts (MSA)
dc.contributor.otherCairo
dc.contributor.otherEgypt; Department of Pharmaceutics
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherAl-Azhar University
dc.contributor.otherCairo
dc.contributor.otherEgypt; Department of Pharmaceutics
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherBritish University in Egypt
dc.contributor.otherBUE Cairo
dc.contributor.otherEgypt; Department of Pharmacology
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherBritish University in Egypt
dc.contributor.otherBUE Cairo
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:41:11Z
dc.date.available2020-01-09T20:41:11Z
dc.date.issued2017
dc.descriptionScopus
dc.description.abstractHoney was used to treat wounds since ancient times till nowadays. The present study aimed at preparing a honey-based hydrogel and assay its antimicrobial properties and wound healing activity; in-vitro and in-vivo. Topical honey hydrogel formulations were prepared using three honey concentrations with gelling agents; chitosan and carbopol 934. The prepared formulae were evaluated for pH, spreadability, swelling index, in-vitro release and antimicrobial activity. The pH and spreadability were in the range of 4.3-6.8 and 5.7-8.6 cm, respectively. Chitosan-based hydrogel showed higher in-vitro honey release with diffusional exponent 'n ? 0.5 indicates Fickian diffusion mechanism. Hydrogel formulae were assessed for in-vitro antimicrobial activity using Disc Diffusion antibiotic sensitivity test against common burn infections bacteria; Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumonia and Streptococcus pyogenes. The 75% honey-chitosan hydrogel showed highest antimicrobial activity. This formula was tested for in-vivo burn healing using burn-induced wounds in mice. The formula was evaluated for burn healing and antibacterial activities compared to commercial product. 75% honey-chitosan hydrogel was found to possess highest healing rate of burns. The present study concludes that 75% honey-chitosan hydrogel possesses greater wound healing activity compared to commercial preparation and could be safely used as an effective natural topical wound healing treatment. � 2017 The Author(s).en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=21100200805&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1038/s41598-017-08771-8
dc.identifier.doiPubMed ID 28851905
dc.identifier.issn20452322
dc.identifier.otherhttps://doi.org/10.1038/s41598-017-08771-8
dc.identifier.otherPubMed ID 28851905
dc.identifier.urihttps://t.ly/VZLEP
dc.language.isoEnglishen_US
dc.publisherNature Publishing Groupen_US
dc.relation.ispartofseriesScientific Reports
dc.relation.ispartofseries7
dc.subjectantiinfective agenten_US
dc.subjectanimalen_US
dc.subjectburnen_US
dc.subjectchemical phenomenaen_US
dc.subjectchemistryen_US
dc.subjectcomplicationen_US
dc.subjectdrug effecten_US
dc.subjectdrug formulationen_US
dc.subjectdrug therapyen_US
dc.subjectfemaleen_US
dc.subjecthoneyen_US
dc.subjecthydrogelen_US
dc.subjectmaleen_US
dc.subjectmicrobial sensitivity testen_US
dc.subjectmouseen_US
dc.subjectpathologyen_US
dc.subjectwound healingen_US
dc.subjectwound infectionen_US
dc.subjectAnimalsen_US
dc.subjectAnti-Infective Agentsen_US
dc.subjectBurnsen_US
dc.subjectChemical Phenomenaen_US
dc.subjectDrug Compoundingen_US
dc.subjectFemaleen_US
dc.subjectHoneyen_US
dc.subjectHydrogelsen_US
dc.subjectMaleen_US
dc.subjectMiceen_US
dc.subjectMicrobial Sensitivity Testsen_US
dc.subjectWound Healingen_US
dc.subjectWound Infectionen_US
dc.titleHoney-based hydrogel: In vitro and comparative in vivo evaluation for burn wound healingen_US
dc.typeArticleen_US
dcterms.isReferencedByHuang, X., Bao, X., Liu, Y., Wang, Z., Hu, Q., Catechol-Functional Chitosan/Silver Nanoparticle Composite as a Highly Effective Antibacterial Agent with Species-Specific Mechanisms (2017) Sci. Rep., 7, p. 1860; Gulfraz, M., Compositional analysis and antimicrobial activity of various honey types of Pakistan (2011) Int. J. Food Sci. Technol., 46, pp. 263-267; Azim, M.K., Sajid, M., Evaluation of nematocidal activity in natural honey (2009) Pak. J. Bot., 41, pp. 3261-3264; Azim, M.K., Perveen, H., Mesaik, M.A., Simjee, S.U., Antinociceptive activity of natural honey in thermal-nociception models in mice (2007) Phytother. Res., 21, pp. 194-197; El-Kased Reham, F., Natural antibacterial remedy for respiratory tract infections (2016) Asian Pac. J. Trop. Biomed., 6, pp. 270-274; Tonks, A.J., A 5.8-kDa component of manuka honey stimulates immune cells via TLR4 (2007) J. Leukoc. Biol., 82, pp. 1147-1155; Swellam, T., Antineoplastic activity of honey in an experimental bladder cancer implantation model: In vivo and in vitro studies (2003) Int. J. Urol., 10, pp. 213-219; Alfonso, R.G., (2000) Remington, The Science and Practice of Pharmacy, p. 856. , Lippincott Williams & Wilkins; Honrao, M.S., Pabari, R., Gels (2004) The Indian Pharmacist., 5, pp. 16-21; Temu, M.J., Damian, F., Kinget, R., Mooter, G.V.D., Intra-vaginal gels as drug delivery systems (2004) J. Women. Health., 13, pp. 834-844; Cooper, R.A., Molan, P.C., Harding, K.G., Antibacterial activity of honey against strains of Staphylococcus aureus from infected wounds (1999) J. R. Soc. Med., 92, pp. 283-285; Visavadia, B.G., Honeysett, J., Danford, M.H., Manuka honey dressing: An effective treatment for chronic wound. Br (2008) J. Oral. Maxillofac. Surg., 6, pp. 55-56; Lusby, P.E., Coombes, A.L., Wilkinson, J.M., Bactericidal activity of different honeys against pathogenic bacteria (2005) Arch. Med. Res., 36, pp. 464-467; Henriques, A., Jackson, S., Cooper, R., Burton, N., Free radical production and quenching in honeys with wound healing potential (2006) J. Antimicrob. Hemother., 58, pp. 773-777; Swarbrick, J., Boylan, J.C., (1992) Encyclopedia of Pharmaceutical Technology, , Marcel Dekker, Inc; Klich, C.M.J., Jellies, (1992) Encyclopedia of Pharmaceutical Technology, pp. 415-439. , Swarbrick J, Boylan JC, eds.Marcel Dekker Inc; Zohdi, R.M., Zakaria, Z.A.B., Yusof, N., Mustapha, N.M., Abdullah, M.N.H., Sea cucumber (Stichopus hermanii) based hydrogel to treat burn wounds in rats (2011) J. Biomed. Mater. Res. Part B., 98, pp. 30-37; Yang, J.M., Su, W.Y., Leu, T.L., Yang, M.C., Evaluation of chitosan/PVA blended hydrogel membranes (2004) J. Membrane Sci., 236, pp. 39-51; Cho, W.J., Heang, O.S., Ho, L.J., Alginate film as a novel post-surgical tissue adhesion barrier (2010) J. Biomater. Sci., 21, pp. 701-713; Jayakumar, R., Prabaharan, M., Nair, S.V., Tamura, H., Novel chitin and chitosan nanofibers in biomedical applications (2010) Biotechnol. Adv., 28, pp. 142-150; Bhuvaneshwari, S., Sruthi, D., Sivasubramanian, V., Niranjana kalyani and Sugunabai J. Development and characterization of chitosan film (2011) Int. J. Eng. Res. Appl., 1, pp. 292-299; Guerrero, L.I., De La Caba, K., Functional Properties of chitosan-based films (2013) Carbohydr Polym., 93, pp. 339-346; Xu, J., McCarthy, S.P., Gross, R.A., Kaplan, D.L., Chitosan film acylation and effects on biodegradability (1996) Macromolecules., 29, pp. 3436-3440; In-Yong, K., Chitosan and its derivatives for tissue engineering applications (2008) Biotechnol. Adv., 26, pp. 1-21; Shelma, R., Paul, W., Sharma, C.P., Chitin nanofibre reinforced thin chitosan films for Wound healing application (2008) Trends Biomater. Artif. Organs., 22, pp. 107-111; Dutta, P.K., Tripathi, S., Mehrotra, G.K., Dutta, J., Perspectives for chitosan based antimicrobial films in food applications (2009) J. Food Chem., 114, pp. 1173-1182; Emir, B.D., Raphael, M.O., Perspectives on: Chitosan Drug Delivery Systems Based on their Geometries (2006) J. Bioact. Compat. Polym., 21, pp. 351-368; Marie, P., Arockianathan, S., Evaluation of biocomposite films containing alginate and sago starch impregnated with silver nano particles (2012) Carbohydr Polym., 90, pp. 717-724; Mercy, H.P., Halim, A.S., Hussein, A.R., Chitosan-derivatives as hemostatic agents: Their role in tissue regeneration (2012) Regen. Med., 1, pp. 38-46; Pu, X.-M., Fabrication of chitosan/hydroxylapatite composite rods with a layer-by-layer structure for fracture fixation (2012) J. Biomed. Mater. Res. B., 100, pp. 1179-1189; Nie, J., Wang, Z., Hu, Q., Chitosan hydrogel structure modulated by metal ions (2016) Sci. Rep, 6, p. 36005; (2005) The Macrogalleria. Polymer Science Learning Center, , Acrylates. Retrieved 2015-06-25; Orwoll, R., Yong, A., Chong, S., Poly acrylic acid (1999) Polymer Data Handbook, pp. 252-253. , Mark James E Oxford University Press, Inc; Kaiser, N., Klein, D., Karanja, P., Greten, Z., Newman, J., (2009). Inactivation of chlorhexidine gluconate on skin by incompatible alcohol hand sanitizing gels (2008) Am. J. Infect. Control., 37, pp. 255-256; Todica, M., UV-Vis fluorescence investigation of some poly (acrylic) gels (2015) Studia UBB Chemia., 1, pp. 7-17; Guptal, A., Mishra, A.K., Sinngh, A.K., Gupta, V., Bansal, P., Formulation and evaluation of topical gel of diclofenac sodium using different polymers (2010) Drug Invent. Today., 2, pp. 250-253; Anumolu, S.S., Doxycycline hydrogels with reversible disulfide crosslinks for dermal wound healing of mustard injuries (2010) Biomaterials, pp. 1-14; Contreras, M., Sanchez, M., Application of factorial design to the study of the flow behavior, spreadability, transparency of carbopol ETD 2020ge1. Part II (2002) Int. J. Pharm., 234, pp. 149-157; Rao, N.G.R., Rao, K.P., Muthalik, S., Clinical studies and antimicrobial activity of ciprofloxacin hydrochloride medicated dental gels for periodontal infection (2009) Asian J. Pharmacol., 3, pp. 125-134; Gonullu, U., Uner, M.I., Yener, G., Karaman, E.M.F., Gmus, Z.A., Formulation and characterization of solid lipid nanoparticles, nanostructured lipid carriers and nanoemulsion of lornoxicam for transdermal delivery (2015) Acta Pharm, 65, pp. 1-13; Bauer, A.W., Kirby, W.M., Sherris, J.C., Turck, M., Antibiotic susceptibility testing by a standardized single disk method (1966) Am. J. Clin. Pathol., 45, pp. 493-496; Cheesbrough, M., (2000) District Laboratory Practice in Tropical Countries. Part II. 1933-1934, , Cambridge University Press; Koneman, E.W., Allen, S.D., Janda, W.M., Schreckenberger, P.C., Winn, W.C., (1997) Diagnostic Microbiology, pp. 803-841. , 5th edn, Philadelphia, Lippincott; Rozaini, M.Z., Zuki, A.B.Z., Noordin, M., Norimah, Y., Hakim, A.N., The effects of different types of honey on tensile strength evaluation of burn wound tissue healing (2004) Int. J. Appl. Res. Vet. M., 2, pp. 290-296; Banchroft, J.D., Stevens, A., Turner, D.R., (1996) Theory and Practice of Histological Techniques, pp. 273-292. , Fourth Ed. Churchil Livingstone, New York, London, San Francisco, Tokyo; Ahmed, E.M., Hydrogel: Preparation, characterization, and applications: A review (2015) J. Adv. Res., 6, pp. 105-121; Sun, Y., Self-assembly of a 5-fluorouracil-dipeptide hydrogel (2016) Chem. Commun., 52, pp. 5254-5257; Kim, S.H., Sun, Y., Kaplan, J.A., Grinstaff, M.W., Parquette, J.R., Photo-crosslinking of a self-assembled coumarin-dipeptide hydrogel (2015) New J. Chem., 39, pp. 3225-3228; Verhulsel, M., A review of microfabrication and hydrogel engineering for micro-organs on chips (2014) Biomaterials, 35, pp. 1816-1832; Hoffman, A.S., Hydrogels for biomedical applications (2002) Adv. Drug Deliv. Rev., 54, pp. 3-12; Peppas, N.A., Hilt, J.Z., Khademhosseini, A., Langer, R., Hydrogels in biology and medicine: From molecular principles to bionanotechnology (2006) Adv. Mater., 18, pp. 1345-1360; Peppas, N.A., Bures, P., Leobandung, W., Ichikawa, H., Hydrogels in pharmaceutical formulations (2000) Eur. J. Pharm. Biopharm., 50, pp. 27-46; Jeong, B., Kim, S.W., Bae, Y.H., Thermosensitive sol-gel reversible hydrogels (2002) Adv. Drug Deliv. Rev., 54, pp. 37-51; Nie, J., Orientation in multi-layer chitosan hydrogel: Morphology, mechanism, and design principle (2015) Sci. Rep., 5, p. 7635; Knapczyk, L., Requirements of chitosan for pharmaceutical and biomedical applications (1989) Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical Properties and Applications, pp. 657-663. , in: G. Skak-Braek, T. Anthonsen, P. Sandford (Eds), Elsevier, London; Hirano, H.S.S., Akiyama, I., Nonaka, I., Chitosan: A biocompatible material for oral and intravenous administration (1990) Progress in Biomedical Polymers, Plenum Press, pp. 283-289. , in: C. G. Gebelein, R. L. Dunn (Eds.),New York; Muzzarelli, R.A.A., Human enzymatic activities related to the therapeutic administration of chitin derivatives (1997) Cell. Mol. Life Sci., 53, pp. 131-140; Hennink, W.E., Nostrum, C., Department of pharmaceutics, utrecht university (2002) Adv. Drug Deliv. Rev., 54, pp. 13-36; Bhattarai, N., Gunn, J., Zhang, M., Chitosan-based hydrogels for controlled, localized drug delivery (2010) Adv. Drug Deliv. Rev., 62, pp. 83-99; Martin, A., (2006) Martin's Physical Pharmacy and Pharmaceutical Sciences: Physical Chemical and Biopharmaceutical Principles in the Pharmaceutical Sciences, pp. 565-569. , Fifth edition, Lippincott Williams & Wilkins; Molan, P.C., The role of honey in the management of wounds (1999) J. Wound Care., 8, pp. 415-418; Kumar, L., Verma, R., In vitro evaluation of topical gel prepared using natural polymer (2010) International Journal of Drug Delivery., 2, pp. 58-63; Hiremath, J.N., Vishalakshi, B., Effect of crosslinking on swelling behavior of IPN hydrogels of Guar Gum & Polyacrylamide (2012) Der Pharma Chemica., 3, pp. 946-955; Rozaini, M.Z., Zuki, A.B.Z., Noordin, M.M., Norimah, Y., Abdullah, M.N.H., The effect of topical application of Malaysian honey on burn wound healing (2004) J. V. M., 16, pp. 47-50; Kim, S.W., Bae, Y.H., Okano, T., Hydrogels: Swelling, drug loading, and release (1992) Pharm. Res., 9, pp. 283-290; Huang, X., Brazel, C.S., Analysis of burst release of proxyphylline from poly(vinyl alcohol) hydrogels (2003) Chem. Eng. Commun., 190, pp. 519-532; Jeong, B., Bae, Y.H., Kim, S.W., Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers (2000) J. Control. Release, 63, pp. 155-163; Subrahmanyam, M., Topical application of honey for burn wound treatment-an overview (2007) Ann. Burns Fire Disasters., 20, pp. 322-333; Wang, Z., Nie, J., Qin, W., Hu, Q., Tang, B.Z., Gelation process visualized by aggregation-induced emission fluorogens (2016) Nat. Commun., 7, p. 12033; Aljady, A.M., Kamaruddin, M.Y., Jamal, A.M., Mohd-Yassim, M.Y., Biochemical study on the efficacy of Malaysian Honey on inflicted wounds: An animal model (2000) Med. J. Islamic World Acad. Sci., 13, pp. 125-132; Khoo, Y.T., Halim, A.S., Singh, K.B., Mohamad, N.A., Wound contraction effects and antibacterial properties of Tualang honey on full-thickness burn wounds in rats in comparison to hydrofibre (2010) BMC Complement. Altern. Med., 10, pp. 1-8; Roopa, G., Bhat, R.S., Wound healing activity of a prepared long acting gel loaded with ciprofloxacin HCL microspheres in albino rat (2010) Pharmacology, 2, pp. 1010-1016; Canal, T., Peppas, N.A., Correlation between mesh size and equilibrium degree of swelling of polymeric networks (1989) J. Biomed. Mater. Res., 23, pp. 1183-1193; Amsden, B., Solute diffusion within hydrogels (1998) Mechanisms and Models, Macromolecules., 31, pp. 8382-8395; Raja, R., Abbulu, K., Sudhakar, M., Roopakarki, S., Rajkumar, B., Design and in vitro evaluation of modified release valsartan hydrogels (2011) Int. J. of Drug Delivery, 3, pp. 648-660; Chauhan, A., Pandey, V., Chacko, K.M., Khandal, R.K., Antibacterial activity of raw and processed honey (2010) Electron. J. Biol., 5, pp. 58-66; Armon, P.J., The use of honey in the treatment of infected wounds (1980) Trop, Doct., 10; Fernandez, R., Griffiths, R., Water for wound cleansing (2008) Cochrane Database Syst, Rev., 23; Parsons, D., Bowler, P.G., Myles, V., Jones, S., Silver antimicrobial dressings in wound management: A comparison of antibacterial, physical, and chemical characteristics (2005) Wounds, 17, pp. 222-232; Molan, P.C., The evidence supporting the use of honey as a wound dressing (2006) Int. J. Low Extrem. Wounds, 5, pp. 40-54; Oladejo, O., A comparative study of the wound healing properties of honey and Ageratum conyzoides (2003) Afr. J. Med. Sci, 32, pp. 193-196; Hejase, M., Bihrle, R., Coogan, C., Genital Fournier's gangrene: Experience with 38 patients (1996) Urology, 47, pp. 734-739; Yang, K., The use of honey in the treatment of chilblains, non-specific ulcers, and small wounds (1944) Chin. Med. J., 62, pp. 55-60; Hutton, D., Treatment of pressure sores (1966) Nurs Times, 62, pp. 1533-1534; Iftikhar, F., Effects of acacia honey on wound healing in various rat models (2010) Phytother Res., 24, pp. 583-586; Subrahmanyam, M., A prospective randomized clinical and histological study of superficial burn wound healing with honey and silver sulfadiazine (1998) Burns, 24, pp. 157-161; Kumar, A., Sharma, V., Singh, H., Prakash, P., Singh, S., Efficacy of some indigenous drugs in tissue repair in buffaloes (1993) Indian Vet J, 70, pp. 42-44; Gupta, S., Singh, H., Varshney, A., Prakash, P., Therapeutic efficacy of honey in infected wounds in buffaloes (1992) Indian J Anim Sci, 62, pp. 521-523; Bergman, A., Yanai, J., Weiss, J., Bell, D., David, M., Acceleration of wound healing by topical application of honey (1983) An Animal Model. Am J Surg, 145, pp. 374-376; Bulman, M., Honey as a surgical dressing (1955) Middlesex Hosp J, 55, pp. 188-189; Suguna, L., Chandrakasan, G., Joseph, K.T., Influence of honey on collagen metabolism during wound healing in rats (1992) J Clin Biochem Nutr, 13, pp. 7-12
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_128.png
Size:
2.73 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
41598_2017_Article_8771.pdf
Size:
1.79 MB
Format:
Adobe Portable Document Format
Description: