The hidden mechanism beyond ginger (Zingiber officinale Rosc.) potent in vivo and in vitro anti-inflammatory activity
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Ezzat, Shahira M | |
dc.contributor.author | Ezzat M.I. | |
dc.contributor.author | Okba M.M. | |
dc.contributor.author | Menze E.T. | |
dc.contributor.author | Abdel-Naim A.B. | |
dc.contributor.other | Pharmacognosy Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Kasr El-Ainy Street | |
dc.contributor.other | Cairo | |
dc.contributor.other | 11562 | |
dc.contributor.other | Egypt; Department of Pharmacognosy | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | October University for Modern Science and Arts (MSA) | |
dc.contributor.other | 6th October | |
dc.contributor.other | 12566 | |
dc.contributor.other | Egypt; Department of Pharmacology and Toxicology | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Ain Shams University | |
dc.contributor.other | Cairo | |
dc.contributor.other | 11566 | |
dc.contributor.other | Egypt; Department of Pharmacology and Toxicology | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | King Abdulaziz University | |
dc.contributor.other | Jeddah | |
dc.contributor.other | Saudi Arabia | |
dc.date.accessioned | 2020-01-09T20:40:57Z | |
dc.date.available | 2020-01-09T20:40:57Z | |
dc.date.issued | 2018 | |
dc.description | Scopus | |
dc.description | MSA Google Scholar | |
dc.description.abstract | Ethnopharmacological relevance Ginger (Zingiber officinale Roscoe) is a well known anti-inflammatory drug in the Egyptian, Indian and Chinese folk medicines, yet its mechanism of action is unclear. Aim of the study To explore its mechanism of action and to correlate it to its biophytochemicals. Materials and methods Various extracts viz. water, 50%, 70%, 80%, and 90% ethanol were prepared from ginger rhizomes. Fractionation of the aqueous extract (AE) was accomplished using Diaion HP-20. In vitro anti-inflammatory activity of the different extracts and isolated compounds was evaluated using protein denaturation inhibition, membrane stabilization, protease inhibition, and anti-lipoxygenase assays. In vivo anti-inflammatory activity of AE was estimated using carrageenan-induced rat paw edema in rats at doses 25, 50, 100 and 200 mg/kg b.wt. Results All the tested extracts showed significant (p< 0.1) in vitro anti-inflammatory activities. The strongest anti-lipoxygenase activity was observed for AE that was more significant than that of diclofenac (58% and 52%, respectively) at the same concentration (125 ?g/ml). Purification of AE led to the isolation of 6-poradol (G1), 6-shogaol (G2); methyl 6- gingerol (G3), 5-gingerol (G4), 6-gingerol (G5), 8-gingerol (G6), 10-gingerol (G7), and 1-dehydro-6-gingerol (G8). G1, G2 and G8 exhibited potent activity in all the studied assays, while G4 and G5 exhibited moderate activity. In vivo administration of AE ameliorated rat paw edema in a dose-dependent manner. AE (at 200 mg/kg) showed significant reduction in production of PGE2, TNF-?, IL-6, monocyte chemoattractant protein-1 (MCP-1), regulated upon activation, normal T-cell expressed and secreted (RANTES), myeloperoxidase (MPO) activity by 60%, 57%, 60%, 41%, 32% and 67%, respectively. AE at 100 and 200 mg/kg was equipotent to indomethacin in reduction of NOx level and in increasing the total antioxidant capacity (TAC). Histopathological examination revealed very few inflammatory cells infiltration and edema after administration of AE (200 mg/kg) prior to carrageenan. Conclusions Ginger anti-inflammatory activity is mediated by inhibiting macrophage and neutrophils activation as well as negatively affecting monocyte and leukocyte migration. This was evidenced by the dose-dependent decrease in pro-inflammatory cytokines and chemokines and replenishment the total antioxidant capacity. � 2017 Elsevier B.V. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=23015&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1016/j.jep.2017.12.019 | |
dc.identifier.doi | PubMed ID 29253614 | |
dc.identifier.issn | 3788741 | |
dc.identifier.other | https://doi.org/10.1016/j.jep.2017.12.019 | |
dc.identifier.other | PubMed ID 29253614 | |
dc.identifier.uri | https://t.ly/MXmyV | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier Ireland Ltd | en_US |
dc.relation.ispartofseries | Journal of Ethnopharmacology | |
dc.relation.ispartofseries | 214 | |
dc.subject | جامعة أكتوبر للعلوم الحديثة والآداب | |
dc.subject | MSA University | |
dc.subject | University for Modern Sciences and Arts | |
dc.subject | October University for Modern Sciences and Arts | |
dc.subject | 1-Dehydro-6-Gingerol | en_US |
dc.subject | 6-Shogaol | en_US |
dc.subject | Anti-lipoxygenase activity | en_US |
dc.subject | Inflammatory markers | en_US |
dc.subject | (10) gingerol | en_US |
dc.subject | (6) gingerol | en_US |
dc.subject | 1 dehydro 6 gingerol | en_US |
dc.subject | 5 gingerol | en_US |
dc.subject | 6 poradol | en_US |
dc.subject | 6 shogaol | en_US |
dc.subject | 8 gingerol | en_US |
dc.subject | antiinflammatory agent | en_US |
dc.subject | diclofenac | en_US |
dc.subject | ginger extract | en_US |
dc.subject | indometacin | en_US |
dc.subject | interferon receptor | en_US |
dc.subject | interleukin 1alpha | en_US |
dc.subject | interleukin 1beta | en_US |
dc.subject | interleukin 6 | en_US |
dc.subject | lipoxygenase | en_US |
dc.subject | methyl 6 gingerol | en_US |
dc.subject | monocyte chemotactic protein 1 | en_US |
dc.subject | myeloperoxidase | en_US |
dc.subject | prostaglandin E2 | en_US |
dc.subject | proteinase | en_US |
dc.subject | RANTES | en_US |
dc.subject | tumor necrosis factor | en_US |
dc.subject | unclassified drug | en_US |
dc.subject | antiinflammatory agent | en_US |
dc.subject | antioxidant | en_US |
dc.subject | autacoid | en_US |
dc.subject | carrageenan | en_US |
dc.subject | cytokine | en_US |
dc.subject | lipoxygenase inhibitor | en_US |
dc.subject | plant extract | en_US |
dc.subject | prostaglandin E2 | en_US |
dc.subject | proteinase inhibitor | en_US |
dc.subject | adult | en_US |
dc.subject | animal cell | en_US |
dc.subject | animal experiment | en_US |
dc.subject | animal model | en_US |
dc.subject | animal tissue | en_US |
dc.subject | antiinflammatory activity | en_US |
dc.subject | antioxidant assay | en_US |
dc.subject | Article | en_US |
dc.subject | carrageenan-induced paw edema | en_US |
dc.subject | controlled study | en_US |
dc.subject | dose response | en_US |
dc.subject | drug isolation | en_US |
dc.subject | drug mechanism | en_US |
dc.subject | drug potency | en_US |
dc.subject | enzyme inhibition | en_US |
dc.subject | enzyme inhibition assay | en_US |
dc.subject | ginger | en_US |
dc.subject | histopathology | en_US |
dc.subject | IC50 | en_US |
dc.subject | in vitro study | en_US |
dc.subject | in vivo study | en_US |
dc.subject | inflammatory infiltrate | en_US |
dc.subject | leukocyte migration | en_US |
dc.subject | macrophage activation | en_US |
dc.subject | male | en_US |
dc.subject | membrane stabilization | en_US |
dc.subject | monocyte | en_US |
dc.subject | neutrophil | en_US |
dc.subject | nonhuman | en_US |
dc.subject | protein denaturation | en_US |
dc.subject | rat | en_US |
dc.subject | animal | en_US |
dc.subject | chemically induced | en_US |
dc.subject | chemistry | en_US |
dc.subject | comparative study | en_US |
dc.subject | disease model | en_US |
dc.subject | drug effect | en_US |
dc.subject | edema | en_US |
dc.subject | erythrocyte membrane | en_US |
dc.subject | human | en_US |
dc.subject | inflammation | en_US |
dc.subject | isolation and purification | en_US |
dc.subject | macrophage | en_US |
dc.subject | medicinal plant | en_US |
dc.subject | metabolism | en_US |
dc.subject | neutrophil chemotaxis | en_US |
dc.subject | phytotherapy | en_US |
dc.subject | plant root | en_US |
dc.subject | Sprague Dawley rat | en_US |
dc.subject | Animals | en_US |
dc.subject | Anti-Inflammatory Agents | en_US |
dc.subject | Antioxidants | en_US |
dc.subject | Carrageenan | en_US |
dc.subject | Chemotaxis, Leukocyte | en_US |
dc.subject | Cytokines | en_US |
dc.subject | Dinoprostone | en_US |
dc.subject | Disease Models, Animal | en_US |
dc.subject | Dose-Response Relationship, Drug | en_US |
dc.subject | Edema | en_US |
dc.subject | Erythrocyte Membrane | en_US |
dc.subject | Ginger | en_US |
dc.subject | Humans | en_US |
dc.subject | Inflammation | en_US |
dc.subject | Inflammation Mediators | en_US |
dc.subject | Lipoxygenase Inhibitors | en_US |
dc.subject | Macrophage Activation | en_US |
dc.subject | Macrophages | en_US |
dc.subject | Male | en_US |
dc.subject | Monocytes | en_US |
dc.subject | Neutrophils | en_US |
dc.subject | Phytotherapy | en_US |
dc.subject | Plant Extracts | en_US |
dc.subject | Plant Roots | en_US |
dc.subject | Plants, Medicinal | en_US |
dc.subject | Protease Inhibitors | en_US |
dc.subject | Rats, Sprague-Dawley | en_US |
dc.title | The hidden mechanism beyond ginger (Zingiber officinale Rosc.) potent in vivo and in vitro anti-inflammatory activity | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Agarwal, M., Walia, S., Dhingra, S., Khambay, B.P.S., Insect growth inhibition, antifeedant and antifungal activity of compounds isolated/derived from Zingiber officinale Roscoe (ginger) rhizomes (2001) Pest Manag. Sci., 57, pp. 289-300; Alebouyeh, M., Pourpak, Z., Ahmadiani, A., Increase in serum level of interleukin-1 alpha mediates morphine anti-inflammatory effect in carrageenan-induced paw oedema in mice (2002) Cytokine, 19, pp. 102-105; Appay, V., Rowland-Jones, S.L., RANTES: a versatile and controversial chemokine (2001) Trends Immunol., 22, pp. 83-87; Banchroft, J.D., Stevens, A., Turner, D.R., Theory and Practice of Histological Techniques (1996), Churchil Livingstone New York, London, San Francisco, Tokyo; Bradely, P.P., Priebat, D.A., Christensen, R.D., Rothstein, G., Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker (1982) J. Investig. Dermatol., 78, pp. 206-209; Brown, J.H., Mackey, H.K., Inhibition of heat-induced denaturation of serum proteins by mixtures of non-steroidal anti-inflammatory agents and amino acids (1968) Proc. Soc. Exp. Biol. Med., 128, pp. 225-228; Charles, R., Garg, S.N., Kumar, S., New gingerdione from the rhizomes of Zingiber officinale (2000) Fitoterapia, 71, pp. 716-718; Connell, D., Sutherland, M., A re-examination of gingerol, shogaol and zingerone, the pungent principles of ginger (Zingiber officinale Roscoe) (1969) Aust. J. Chem., 22, pp. 1033-1043; Connell, D.W., McLachlan, R., Natural pungent compounds: examination of gingerols, shogaols, paradols and related compounds by thin-layer and gas chromatography (1972) J. Chromatogr., 67, pp. 29-35; Denniff, P., Macleod, I., Whiting, D.A., Studies in the biosynthesis of [6]-gingerol, pungent principle of ginger (Zingiber officinale) (1980) J. Chem. Soc. Perkin Trans., 1, pp. 2637-2641; Dugasani, S., Pichika, M.R., Nadarajah, V.D., Balijepalli, M.K., Tandra, S., Korlakunta, J.N., Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol,[10]-gingerol and [6]-shogaol (2010) J. Ethnopharmacol., 127, pp. 515-520; El-Abhar, H.S., Hammad, L.N., Gawad, H.S., Modulating effect of ginger extract on rats with ulcerative colitis (2008) J. Ethnopharmacol., 118, pp. 367-372; Elsbach, P., Weiss, J., Phagocytic ceils: oxygen-independent antimicrobial systems (1988) Inflammation: Basic Principles and Clinical Correlates, pp. 445-470. , J.I. Gallin I.M. Goldstein R. Snyderman Raven Press New York; Gallin, J.I., Snyderman, R., (1999) Inflamation: Basic Principles and Clinical Correlates, pp. 1-3. , third ed Lippincott Williams & Wilkins Philadelphia; Ghayur, M.N., Gilani, A.H., Pharmacological basis for the medicinal use of ginger in gastrointestinal disorders (2005) Dig. Dis. Sci., 50, pp. 1889-1897; Goulet, J.L., Snouweart, J.N., Latour, A.M., Coffman, T.M., Altered inflammatory responses in leukotriene-deficient mice (1994) Proc. Natl. Acad. Sci. USA, 91, pp. 12852-12856; He, X.G., Bernart, M.W., Lian, L.S., Lin, L.Z., High performance liquid chromatography-electrospray mass spectrometric analysis of pungent constituents of ginger (1998) J. Chromatogr., 796, pp. 327-334; Kiuchi, F., Iwakami, S., Shibuya, M., Hanaoka, F., Sankawa, U., Inhibition of prostaglandin and leukotriene biosynthesis by gingerols and diarylheptanoids (1992) Chem. Pharm. Bull., 40, pp. 387-391; Kiuchi, F., Shibuya, M., Sankawa, U., Inhibitors of prostaglandin biosynthesis from ginger (1982) Chem. Pharm. Bull., 30, pp. 754-757; Ko, J.K.S., Sham, N.F., Guo, X., Cho, C.H., Beneficial intervention of experimental colitis by passive cigarette smoking through the modulation of cytokines in rats (2001) J. Investig. Med., 49, pp. 21-29; Koracevic, D., Koracevic, G., Djordjevic, V., Andrejevic, S., Cosic, V., Method for the measurement of antioxidant activity in human fluids (2001) J. Clin. Pathol., 54, pp. 356-361; K�hn, H., Chaitidis, P., Roffeis, J., Walther, M., Arachidonic Acid metabolites in the cardiovascular system: the role of lipoxygenase isoforms in atherogenesis with particular emphasis on vascular remodeling (2007) J. Cardiovasc. Pharmacol., 50, pp. 609-620; Langner, E., Greifenberg, S., Gruenwald, J., Ginger: history and use (1998) Adv. Ther., 15, pp. 25-44; Lowry, O.H., Rosebrough, N.J., Farr, A.L., RJ, R., Protein measurement with the Folin phenol reagent (1951) J. Biol. Chem., 193, pp. 265-275; Mabberley, D.J., (1997) The Plant-book: A Portable Dictionary of the Vascular Plants, p. 767. , 2nd ed. Cambridge University Press Cambridge, U.K; Miranda, K.M., Espey, M.G., Wink, D.A., A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite (2001) Nitric Oxide, 5, pp. 62-71; Mizushima, Y., Kobayashi, M., Interaction of anti-inflammatory drugs with serum proteins, especially with some biologically active proteins (1968) J. Pharm. Pharmacol., 20, pp. 169-173; Mnich, S.J., Veenhuizen, A.W., Monahan, J.B., Sheehan, K.C., Lynch, K.R., Isakson, P.C., Portanova, J.P., Characterization of a monoclonal antibody that neutralizes the activity of prostaglandin E2 (1995) J. Immunol., 155, pp. 4437-4444; Mustafa, T., Sirivastava, K.C., Ginger (Zingiber officinale) in migraine headache (1990) J. Ethanopharmacol., 29, pp. 267-273; Nurtjahja-Tjendraputra, E., Ammit, A.J., Roufogalis, B.D., Tran, V.H., Duke, C.C., Effective anti-platelet and COX-1 enzyme inhibitors from pungent constituents of ginger (2003) Thromb. Res., 111, pp. 259-265; Opie, E.L., On the relation of necrosis and inflammation to denaturation of proteins (1962) J. Exp. Med., 115, pp. 597-608; Oyedepo, O.O., Femurewas, A.J., Anti-protease and membrane stabilizing activities of extracts of Fagra santhoxiloides, Olax subscorpioides and Tetrapluera tetraptera (1995) Int. J. Pharmacog., 33, pp. 65-69; Plengsuriyakarn, T., Viyanant, V., Eursitthichai, V., Picha, P., Kupradinun, P., Itharat, A., Na-Bangchang, K., Anticancer activities against cholangiocarcinoma, toxicity and pharmacological activities of Thai medicinal plants in animal models (2012) BMC Complement. Altern. Med., 27. , (12:23); Ravindran, P.N., Sasikumar, B., Johnson, K.G., Ratnambal, M.J., Babu, K.N., Zachariah, J.T., Nair, R.R., Genetic resources of ginger (Zingiber officinale Rosc.) and its conservation in India (1994) Plant Genet. Resour. Newsl., pp. 1-4; Rollins, B.J., Monocyte chemoattractant protein 1: a potential regulator of monocyte recruitment in inflammatory disease (1996) Mol. Med. Today, 2, pp. 198-204; Sadique, J., Al-Rqobahs, W.A., Bughaith, EI-Gindi, A.R., The bioactivity of certain medicinal plants on the stabilisation of RBS membrane system (1989) Fitoterapia, 60, pp. 525-532; Sakat, S., Juvekar, A.R., Gambhire, M.N., In vitro antioxidant and anti-inflammatory activity of methanol extract of Oxalis corniculata Linn (2010) Int. J. Pharm. Pharm. Sci., 2, pp. 146-156; Scanlon, V.C., (2010), Sanders, T. Essentials of Anatomy and physiology. Davis F.A., Filadelphia 6th edition, 287; Shinde, U.A., Kulkarni, K.R., Phadke, A.S., Nair, A.M., Mungantiwar, A.A., Dikshit, V.J., Saraf, M.N., Mast cell stabilizing and lipoxygenase inhibitory activity of Cedrus deodara (Roxb.) Loud. Wood Oil. (1999) Indian J. Exp. Biol., 37, pp. 258-261; Shinde, U.A., Phadke, A.S., Nari, A.M., Mungantiwar, A.A., Dikshit, V.J., Saraf, M.N., Membrane stabilization activity- a possible mechanism of action for the anti-inflammatory activity of Cedrus deodara wood oil (1999) Fitoterapia, 70, pp. 251-257; Shirpoor, A., Zerehpoosh, M., Ansari, M.H.K., Kheradmand, F., Rasmi, Y., Ginger extract mitigates ethanol-induced changes of alpha and beta � myosin heavy chain isoforms gene expression and oxidative stress in the heart of male wistar rats (2017) DNA Repair, pp. 45-49; Shoji, N., Iwasa, A., Takemoto, T., Ishida, Y., Cardiotonic principles of ginger (Zingiber officinale Roscoe) (1982) J. Pharm. Sci., 71, pp. 1174-1175; Surh, Y.J., Park, K.K., Chun, K.S., Lee, L., Lee, E., Lee, S.S., Anti-tumor-promoting activities of selected pungent phenolic substances present in ginger (1999) J. Environ. Pathol., Toxicol. Oncol., 18, pp. 131-139; Srivas, K.C., Effects of aqueous extracts of onion, garlic and ginger on platelet aggregation and metabolism of arachidonic acid in the blood vascular system: in vitro study (1984) Prostaglandin Leukotriene Med., 13, pp. 227-235; Srivastava, K.C., Mustafa, T., Ginger (Zingiber officinale) in rheumatism and musculoskeletal disorders (1992) Med. Hypotheses, 39, pp. 342-348; Tachie, A.N., Dwuma-Badu, D., Ayim, J.S.K., Dabra, T.T., Hydroxyphenylalkanones from Amomun melegueta (1975) Phytochemistry, 14, pp. 853-854; Tjendraputra, E., Tran, V.H., Liu-Brennan, D., Roufogalis, B.D., Duke, C.C., Effect of ginger constituents and synthetic analogues on cyclooxygenase-2 enzyme in intact cells (2001) Bioorg. Chem., 29, pp. 156-163; Tripathi, S., Bruch, D., Kittur, D.S., Ginger extract inhibits LPS induced macrophage activation and function (2008) BMC Complement. Altern. Med., 8, p. 1; Tyler, V.E., (1993) The Honest Herbal, pp. 147-148. , 3rd ed Pharmaceutical Product Press New York, London, Norwood; Varma, K.R., Jain, T.C., Bhattacharyya, S.C., Structure and stereochemistry of zingiberol and Juniper camphor (1962) Tetrahedron, 18, p. 979; Virella, G., Immunoserology (1998) Medical Immunology, pp. 259-281. , G. Virella 4th ed Marcel Dekker Inc New York; Wallace, J.L., Keenan, C.M., Granger, D.N., Gastric ulceration induced by nonsteroidal antiinflammatory drugs is a neutrophil-dependent process (1990) Am. J. Physiol. 259(Gastrointestinal Liver Physiol. 22), pp. G462-G467; Winter, C.A., Risley, E.A., Nuss, G.W., Carrageenin-induced edema in hind paw of the rat as an assay for anti-inflammatory drugs (1962) Proc. Soc. Exp. Biol. Med., 111, pp. 544-547; Wohlmuth, H., Leach, D.N., Smith, M.K., Myers, S.P., Gingerol content of diploid and tetraploid clones of ginger (Zingiber officinale Roscoe) (2005) J. Agric. Food Chem., 53, pp. 5772-5778; Zakaria, Z.A., Mohamad, A.S., Chear, C.T., Wong, Y.Y., Israf, D.A., Sulaiman, M.R., Antiinflammatory and antinociceptive activities of Zingiber zerumbet methanol extract in experimental model systems (2010) Med. Princ. Pract., 19, pp. 287-294 | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_256.png
- Size:
- 6.31 KB
- Format:
- Portable Network Graphics
- Description: