The development of a novel smart material based on colloidal microgels and cotton

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorMajcen N.
dc.contributor.authorMohsen R.
dc.contributor.authorSnowden M.J.
dc.contributor.authorMitchell J.C.
dc.contributor.authorVoncina B.
dc.contributor.otherFaculty of Engineering and Science
dc.contributor.otherUniversity of Greenwich
dc.contributor.otherMedway
dc.contributor.otherME4 4TB
dc.contributor.otherUnited Kingdom; Faculty of Biotechnology
dc.contributor.otherOctober University for Modern Sciences and Arts
dc.contributor.otherCairo
dc.contributor.otherEgypt; University of Maribor
dc.contributor.otherGosposvetska 12
dc.contributor.otherMaribor
dc.contributor.other2000
dc.contributor.otherSlovenia
dc.date.accessioned2020-01-09T20:40:54Z
dc.date.available2020-01-09T20:40:54Z
dc.date.issued2018
dc.descriptionScopus
dc.description.abstractColloidal microgels are often described as �smart� due to their ability to undergo quite dramatic conformational changes in response to a change in their environmental conditions (e.g. temperature, pH). A range of novel smart materials were developed by the incorporation of colloidal microgels into cotton fabric. A series of microgels have been prepared by a surfactant free emulsion polymerization based on N-isopropylacrylamide (NIPAM) monomer. Poly(NIPAM) is a thermosensitive polymer which undergoes a conformational transition close to the human skin temperature. Poly(NIPAM) was co-polymerized acrylic acid (AA), to prepare pH/temperature-sensitive microgels. Microgel particles were characterized by scanning electron microscopy (SEM), attenuated total reflectance fourier transform infrared (ATR-FTIR) spectroscopy, and dynamic light scattering (DLS). This research aims at coupling microgel particles onto cotton fibers and comparing between different attachment techniques. The coupling reactions between microgels and cotton cellulose are only feasible if they both have appropriate functionalities. For microgels, this was achieved by using different initiators which introduce different functional groups on the particle surface and different surface charges. Cotton samples were successfully modified by carboxymethylation, periodate oxidation, grafting of 1,2,3,4-butanetetracarboxylic acid, and chloroacetylation in order to target possible reactions with the terminal functional groups of the microgel particles. Microgels were attached to the cotton fabrics using different methods and the bonds formed were determined by ATR-FTIR spectroscopy and SEM. The reaction yields were quantified gravimetrically and the maximum weight increase of cotton samples due to the attached microgels was around 24% (w/w). � 2018en_US
dc.identifier.doihttps://doi.org/10.1016/j.cis.2018.04.005
dc.identifier.doiPubMedID29735162
dc.identifier.issn18686
dc.identifier.otherhttps://doi.org/10.1016/j.cis.2018.04.005
dc.identifier.otherPubMedID29735162
dc.identifier.urihttps://t.ly/lWrdR
dc.language.isoEnglishen_US
dc.publisherElsevier B.V.en_US
dc.relation.ispartofseriesAdvances in Colloid and Interface Science
dc.relation.ispartofseries256
dc.subjectOctober University for Modern Sciences and Arts
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectUniversity of Modern Sciences and Arts
dc.subjectMSA University
dc.subjectAcrylic monomersen_US
dc.subjectAmidesen_US
dc.subjectConformationsen_US
dc.subjectCottonen_US
dc.subjectCotton fabricsen_US
dc.subjectDynamic light scatteringen_US
dc.subjectEmulsificationen_US
dc.subjectEmulsion polymerizationen_US
dc.subjectFourier transform infrared spectroscopyen_US
dc.subjectIntelligent materialsen_US
dc.subjectScanning electron microscopyen_US
dc.subjectSupersaturationen_US
dc.subjectATR FT-IR spectroscopiesen_US
dc.subjectAttenuated total reflectance Fourier transform infrareden_US
dc.subjectConformational transitionsen_US
dc.subjectEnvironmental conditionsen_US
dc.subjectPh/temperature sensitivesen_US
dc.subjectPoly-n-isopropyl acrylamideen_US
dc.subjectSurfactant-free emulsion polymerizationen_US
dc.subjectThermo-sensitive polymeren_US
dc.subjectGelsen_US
dc.subjectAmidesen_US
dc.subjectCottonen_US
dc.subjectEmulsificationen_US
dc.subjectGelsen_US
dc.subjectScanning Electron Microscopyen_US
dc.subjectSupersaturationen_US
dc.titleThe development of a novel smart material based on colloidal microgels and cottonen_US
dc.typeLetteren_US
dcterms.isReferencedByMurray, M., Snowden, M., The preparation, characterisation and applications of colloidal microgles (1995) Adv Colloid Interface Sci, 54, p. 73; Castro Lopez, V., Hadgraft, J., Snowden, M., The use of colloidal microgels as a (trans)dermal drug delivery system (2005) Int J Pharm, 292, p. 137; Mohsen, R., Vine, G., Majcen, N., Alexander, B., Snowden, M., Characterization of thermo and pH responsive NIPAM based microgels and their membrane blocking potential (2013) Colloids Surf A Physicochem Eng Asp, 428, p. 53; Mohsen, R., Thorne, J., Alexander, B., Snowden, M., Deposition of fluorescent NIPAM-based nanoparticles on solid surfaces: quantitative analysis and the factors affecting it (2014) Colloids Surf A Physicochem Eng Asp, 457, p. 107; Mohsen, R., Alexander, B., Richardson, S., Mitchell, J., Diab, A., Snowden, M., Design, synthesis, characterization and toxicity studies of poly (N-iso-propylacrylamide-co-lucifer yellow) particles for drug delivery applications (2016) J Nanomed Nanotechnol, 7; Pelton, R., Chibante, P., Preparation of aqueus latices with N-isopropylacrylamide (1986) Colloids Surf, 20, p. 247; Pelton, R., Temperature-sensitive aqueous microgels (2000) Adv Colloid Interface Sci, 85 (1); Snowden, M., Chowdhry, B., Vincent, B., Morris, G., Colloidal copolymer microgels of N-isopropylacrylamide and acrylic acid: pH, ionic strength and temperature effects (1996) J Chem Soc Faraday Trans, 92, p. 5013; Tanaka, T., Nishio, I., Sun, S., Ueno-Nishio, S., Collapse of gels in an electric field (1982) Science, 218, p. 467; Daly, E., Saunders, B., Temperature dependent electrophoretic mobility and hydrodynamic radius measurements of poly(N-isopropylacrylamide) microgel particles: structural insights (2000) Phys Chem Chem Phys, 2, p. 3187; Thorne, J., Vine, G., Snowden, M., Microgel applications and commercial considerations (2011) Colloid Polym Sci, 289, p. 625; Saunders, B., C., H., Morris, G., Mears, S., Cosgrove, T., Vincent, B., Factors affecting the swelling of poly(N-isopropylacrylamide) microgel particles: fundamental and commercial implications (1999) Colloids Surf A Physicochem Eng Asp, 149, p. 57; Saunders, B., Vincent, B., Microgel particles as model colloids: theory, properties and applications (1999) Adv Colloid Interface Sci, 80 (1); Lu, J., L., J., Yi, M., Ha, H., Solvent effect on grafting polymerization of NIPAAm onto cotton cellulose via ?-preirradiation method (2000) Radiat Phys Chem, 60, p. 625; Liu, J., Zhai, M., Ha, H., Pre-irradiation grafting of temperature sensitive hydrogel on cotton cellulose fabric (1999) Radiat Phys Chem, 55, p. 55; Xie, J., Hsieh, Y., Thermosensitive poly(N-isopropylacrylamide) hydrogels bonded on cellulose supports (2003) J Appl Polym Sci, 89, p. 999; Goodwin, J., Ottewill, R., Pelton, R., Vianello, G., Yates, D., Control of particle-size in formation of polymer lattices (1978) Br Polym J, 10, p. 173; Snowden, M., Vincent, B., The temperature-controlled flocculation of cross-linked latex particles (1992) J Chem Soc Chem Commun, p. 1103; Vicini, S., Princi, E., Luciano, G., Francheschi, E., Pedemonte, E., Oldak, D., Thermal analysis and characterisation of cellulose oxidised with sodium methaperiodate (2004) Thermochim Acta, 418, p. 123; Carmody, O., Frost, R., Xi, Y., Kokot, S., Surface characterisation of selected sorbent materials for common hydrocarbon fuels (2007) Surf Sci, 601, p. 2066; Kraft, A., Reichert, A., Branched non-covalent complexes from carboxylic acids and a tris(tetrahydropyridine) base (1999) Tetrahedron, 55, p. 3923; Charles, Y., Yufeng, X., Dengjin, W., FT-IR spectroscopy study of the polycarboxylic acids used for paper wet strength improvement (1996) Ind Eng Chem Res, 35, p. 4037; Voncina, B., Majcen le Marechal, A., Grafting of cotton with ?-cyclodextrin via poly(carboxylic acid) (2005) J Appl Polym Sci, 96, p. 1323; Udomkichdecha, W., Kittinovarat, S., Thanasoonthornorek, U., Potiyaraj, P., Likitbanakorn, P., Acrylic and maleic acids in nonformaldehyde durable press finishing of cotton fabric (2003) Text Res J, 73, p. 401; Ghosh, P., Das, D., Modification of cotton by acrylic acid (AA) in the presence of NaH2PO4 and K2S2O8 as catalysts under thermal treatment (2000) Eur Polym J, 36, p. 2505
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: