Phenolic profile of centaurea aegyptiaca L. Growing in Egypt and its cytotoxic and antiviral activities
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Bakr R.O. | |
dc.contributor.author | Mohamed S.A.E.H. | |
dc.contributor.author | Ayoub N. | |
dc.contributor.other | Department of Pharmacognosy | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | October University for Modern Sciences and Arts (MSA) | |
dc.contributor.other | Egypt; Department of Pharmacognosy | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Al-Azhar University (Girls) | |
dc.contributor.other | Egypt; Department of Pharmacognosy | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | British University in Egypt (BUE) | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:41:42Z | |
dc.date.available | 2020-01-09T20:41:42Z | |
dc.date.issued | 2016 | |
dc.description | Scopus | |
dc.description.abstract | Background: Centaurea aegyptiaca L (Asteraceae), is one of the most attractive plants growing wildly in Sinai, and is not well investigated for its phytochemical constituents. This study represents the first in-depth characterization of the phenolic profile of the aerial parts of C. aegyptiaca methanolic extract utilizing liquid chromatography (LC) combined with electrospray ionization (ESI) tandem mass spectrometry (MS/MS). Material and Methods: Phenolic profile was researched utilizing LC-HRESI-MS-MS. Assessment of cytotoxic activity against four human cancer cell lines (Hep-G2; hepatocellular carcinoma cells, MCF-7; breast adenocarcinoma cells, and HCT-116; colon carcinoma and HELA; cervical carcinoma cells) was performed using 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Antiviral activity was surveyed utilizing cytopathic effect inhibition assay. Results: A total of sixty-one compounds were tentatively distinguished (twenty-one phenolic acids and their derivatives, thirty-one flavonols and nine flavones) in the negative and positive modes. Centaurea aegyptiaca demonstrated outstanding results against Hep-G2, MCF-7, HCT-116 and HELA cell lines with IC50of 12.1, 30.9, 11.7 and 19.5 ?g/mL respectively compared and doxorubicin as a reference drug. Weak antiviral activity was seen against hepatitis A virus (HAV) and no impact against herpes simplex virus type 1 (HSV 1). Conclusion: This study provides a better understanding of the chemistry of C. aegyptiaca that announces itself as a promising cytotoxic agent. 2016, African Ethnomedicines Network. All rights reserved. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=4700152608&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.21010/ajtcam.v13i6.19 | |
dc.identifier.doi | PubMed ID 28480370 | |
dc.identifier.issn | 1896016 | |
dc.identifier.other | https://doi.org/10.21010/ajtcam.v13i6.19 | |
dc.identifier.other | PubMed ID 28480370 | |
dc.identifier.uri | https://t.ly/7OJ7X | |
dc.language.iso | English | en_US |
dc.publisher | African Ethnomedicines Network | en_US |
dc.relation.ispartofseries | African Journal of Traditional, Complementary and Alternative Medicines | |
dc.relation.ispartofseries | 13 | |
dc.subject | October University for Modern Sciences and Arts | |
dc.subject | جامعة أكتوبر للعلوم الحديثة والآداب | |
dc.subject | University of Modern Sciences and Arts | |
dc.subject | MSA University | |
dc.subject | Centaurea aegyptiaca | en_US |
dc.subject | Cytotoxicity | en_US |
dc.subject | Flavonoid | en_US |
dc.subject | MTT assay | en_US |
dc.subject | 3 (4,5 dimethyl 2 thiazolyl) 2,5 diphenyltetrazolium bromide | en_US |
dc.subject | antineoplastic agent | en_US |
dc.subject | antivirus agent | en_US |
dc.subject | Centaurea aegyptiaca extract | en_US |
dc.subject | Centaurea aegyptiaca plant extract | en_US |
dc.subject | doxorubicin | en_US |
dc.subject | flavone derivative | en_US |
dc.subject | flavonol | en_US |
dc.subject | methanol | en_US |
dc.subject | phenol | en_US |
dc.subject | plant extract | en_US |
dc.subject | unclassified drug | en_US |
dc.subject | antineoplastic agent | en_US |
dc.subject | antivirus agent | en_US |
dc.subject | phenol derivative | en_US |
dc.subject | plant extract | en_US |
dc.subject | antineoplastic activity | en_US |
dc.subject | antiviral activity | en_US |
dc.subject | Article | en_US |
dc.subject | cancer cell line | en_US |
dc.subject | Centaurea | en_US |
dc.subject | Centaurea aegyptiaca | en_US |
dc.subject | chemical composition | en_US |
dc.subject | collisionally activated dissociation | en_US |
dc.subject | controlled study | en_US |
dc.subject | drug mechanism | en_US |
dc.subject | Egypt | en_US |
dc.subject | electrospray mass spectrometry | en_US |
dc.subject | HCT 116 cell line | en_US |
dc.subject | HeLa cell line | en_US |
dc.subject | Hep-G2 cell line | en_US |
dc.subject | Hepatitis A virus | en_US |
dc.subject | Herpes simplex virus 1 | en_US |
dc.subject | human | en_US |
dc.subject | human cell | en_US |
dc.subject | IC50 | en_US |
dc.subject | liquid chromatography | en_US |
dc.subject | MCF-7 cell line | en_US |
dc.subject | MTT assay | en_US |
dc.subject | nonhuman | en_US |
dc.subject | phytochemistry | en_US |
dc.subject | aerial plant part | en_US |
dc.subject | chemistry | en_US |
dc.subject | tandem mass spectrometry | en_US |
dc.subject | Antineoplastic Agents, Phytogenic | en_US |
dc.subject | Antiviral Agents | en_US |
dc.subject | Centaurea | en_US |
dc.subject | Egypt | en_US |
dc.subject | HCT116 Cells | en_US |
dc.subject | HeLa Cells | en_US |
dc.subject | Hep G2 Cells | en_US |
dc.subject | Humans | en_US |
dc.subject | MCF-7 Cells | en_US |
dc.subject | Phenols | en_US |
dc.subject | Plant Components, Aerial | en_US |
dc.subject | Plant Extracts | en_US |
dc.subject | Tandem Mass Spectrometry | en_US |
dc.title | Phenolic profile of centaurea aegyptiaca L. Growing in Egypt and its cytotoxic and antiviral activities | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Ahmed, S.A., Kamel, E.M., Cytotoxic activities of flavonoids from Centaurea scoparia (2014) Scientific World Journal, 7p; Akkal, S., Benayache, F., Medjroubi, K., Tillequin, F., Seguin, E., Flavonoids from Centaurea furfuracea (Asteraceae) (2003) Biochem. Syst. Ecol, 31, pp. 641-643; Beelders, T., de Beer, D., Stander, M.A., Joubert, E., Comprehensive Phenolic Profiling of Cyclopia genistoides (L.) Vent. by LC-DAD-MS and-MS/MS Reveals Novel Xanthone and Benzophenone Constituents (2014) Molecules, 19 (8), pp. 11760-11790; Boik, J., (2001) Natural Compounds in Cancer Therapy, , Oregon Medical Press, Minnesota, USA; Brito, A., Ramirez, J.E., Areche, C., Sep�lveda, B., Simirgiotis, M.J., HPLC-UV-MS Profiles of Phenolic Compounds and Antioxidant Activity of Fruits from Three Citrus Species Consumed in Northern Chile (2014) Molecules, 19, pp. 17400-17421; Chen, H.J., Inbaraj, B.S., Chen, B.H., Determination of Phenolic Acids and Flavonoids in Taraxacum formosanum Kitam by Liquid Chromatography-Tandem Mass Spectrometry Coupled with a Post-Column Derivatization Technique (2012) Int. J. Mol. Sci, 13, pp. 260-285; Clifford, M.N., Zheng, W., Kuhnert, N., Profiling the chlorogenic acids of aster by HPLC-MSn (2006) Phytochem. Anal, 17 (6), pp. 384-393; Cuyckens, F., Claeys, M., Mass spectrometry in the structural analysis of flavonoids (2004) J. Mass Spectrom, 39, pp. 1-15; Dargan, D.J., Investigation of the anti-HSV activity of candidate antiviral agents (1998) Methods in Molecular Medicine, 10, pp. 387-405. , Herpes Simplex Virus Protocols. (Edited by: Brown, SM. and MacLean, AR.) Humana Press Inc., Totowa, NJ; Dartora, N., de Souza, L.M., Santana-Filho, A.P., Iacomini, M., Valduga, A.T., Gorin, P.A.J., Sassaki, G.L., UPLC-PDA-MS evaluation of bioactive compounds from leaves of Ilex paraguariensis with different growth conditions, treatments and ageing (2011) Food Chem, 129 (4), pp. 1453-1461; Erol-Dayi, Pekmez, M., Bona, M., Aras-Perk, A., Arda, N., Total Phenolic contents, Antioxidant Activities and cytotoxicity of three Centaurea Species: C. calcitrapa subsp. calcitrapa, C. ptosimopappa and C. spicata (2011) Free Radicals Antioxid, 1 (2), pp. 31-36; Farrag, N.M., Abd El Aziz, E.M., El-Domiaty, M.M., El Shafea, A.M., Phytochemical investigation of Centaurea araneosa growing in Egypt. Zagazig (1993) J. Pharm. Sci, 2 (1), pp. 29-45; Flamini, G., Antognol, E., Morelli, I., Two flavonoids and other compounds from the aerial parts of Centaurea bracteata from Italy (2001) Phytochemistry, 57, pp. 559-564; Fotakis, G., Timbrell, J.A., In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride (2006) Toxicol Lett, 160 (2), pp. 171-177; Funk, V.A., Bayer, R.J., Keeley, S., Chan, R., Watson, L., Gemeinholzer, B., Schilling, E., Jansen, R.K., Everywhere but Antarctica: Using a super tree to understand the diversity and distribution of the Compositae (2005) Biol. Skr, 55, pp. 343-374; Garcia-Jacas, A., Susanna, V., Mozaffarian, R., Ilarslan, The natural delimitation of Centaurea (Asteraceae: Cardueae): ITS sequence analysis of the Centaurea jacea group (2000) Plant Syst. Evol, 223, pp. 185-199; Handoussa, H., Osmanova, N., Ayoub, N., Mahran, L., Spicatic acid: A 4-carboxygentisic acid from Gentiana spicata extract with potential hepatoprotective activity (2009) Drug Discov Ther, 3 (6), pp. 278-286; Hassaan, Y., Handoussa, H., El-Khatib, A.H., Linscheid, M.W., El Sayed, N., Ayoub, N., Evaluation of Plant Phenolic Metabolites as a Source of Alzheimers Drug Leads (2014) Biomed Research International, 10p; Hu, J.M., Hsiung, G.D., Evaluation of new antiviral agents I: In vitro prospectives (1989) Antiviral Res, 11, pp. 217-232; Ibrahim, R.M., El-Halawany, A.M., Saleh, D.O., El Naggar, E., El-Shabrawya, A.O., El-Hawarya, S.S., HPLC-DAD-MS/MS profiling of phenolics from Securigera securidaca flowers and its anti-hyperglycemic and antihyperlipidemic activities (2015) Rev. Bras. Farmacogn, 25 (2), pp. 134-141; Jaiswal, R., Sovdat, T., Vivan, F., Kuhnert, N., Profiling and characterization by LC-MSn of the chlorogenic acids and hydroxycinnamoyl shikimate esters in mate (Ilex paraguariensis) (2010) J. Agric. Food Chem, 58, pp. 5471-5484; Jeong, J.M., Kang, S.K., Lee, I.H., Lee, J.Y., Jung, H., Antioxidant and Chemosensitizing Effects of Flavonoids with Hydroxy and/or Methoxy Groups and Structure-Activity Relationship (2007) J. Pharm. Pharmaceut. Sci, 10 (4), pp. 537-546; Koukoulitsa, E., Skaltsa, H., Karioti, A., Demetzos, C., Dimas, K., Bioactive sesquiterpene lactones from Centaurea species and their cytotoxic/cytostatic activity against human cell lines in vitro (2002) Planta Med, 68, pp. 649-652; Karg?oglu, M., Cenkci, S., Serteser, A., Konuk, M., Vural, G., Traditional uses of wild plants in the middle Aegean region of Turkey (2010) Human Ecol, 38, pp. 429-450; K�se, Y.B., Iscan, G., Demirci, B., Baser, K.H.C., Celik, S., Antimicrobial activity of the essential oil of Centaurea aladagensis (2007) Fitoterapia, 78, pp. 253-254; Koukoulitsa, C., Geromichalos, G.D., Skaltsa, H., VolSurf analysis of pharmacokinetic properties for several antifungal sesquiterpene lactones isolated from Greek Centaurea sp (2005) J. Comput. Aided Mol. Des, 19, pp. 617-623; Lin, L.Z., Harnly, J.M., Identification of the phenolic components of chrysanthemum flower (Chrysanthemum morifolium Ramat) (2010) Food Chem, 120, pp. 319-326; Medjroubi, K., Benayache, F., Bermejo, J., Sesquiterpene lactones from Centaurea musimomum Antiplasmodial and cytotoxic activities (2005) Fitoterapia, 76 (7-8), pp. 744-746; Orabi, K.Y., Sary, H.G., Ayoub, N.A., Singab, A.N.B., Isolation of a Bioactive Guaianolide from Centaurea aegyptiaca Ethanol Extract (2013) Planta Med, pp. 79-PN62; Oszmia?ski, J., Wojdy?o, A., Nowicka, P., Teleszko, M., Cebulak, T., Wolanin, M., Determination of Phenolic Compounds and Antioxidant Activity in Leaves from Wild Rubus L. Species (2015) Molecules, 20, pp. 4951-4966; Parejo, I., Juregui, O., Viladomat, F., Bastida, J., Codina, C., Characterization of acylated flavonoid-Oglycosides and methoxylated flavonoids from Tagetes maxima by liquid chromatography coupled to electrospray ionization tandem mass spectrometry (2004) Rapid Commun. Mass Spectrom, 18, pp. 2801-2810; Sarg, T.M., El-Domiaty, M., El-Dahmy, S., Further guaianolides from Centaurea aegyptiaca (1987) Sci. Pharm, 55, pp. 107-110; Saroglou, V., Karioti, A., Demetzos, C., Dimas, K., Skaltsa, H., Sesquiterpene lactones from Centaurea spinosa and their antibacterial and cytotoxic activities (2005) J. Nat. Prod, 68, pp. 1404-1407; Schmeda-Hirschmann, G., Quispe, C., Gonz�lez, B., Phenolic Profiling of the South American Baylahuen Tea (Haplopappus spp., Asteraceae) by HPLC-DAD-ESI-MS (2015) Molecules, 20, pp. 913-928; Seghiri, R., Boumaza, O., Mekkiou, R., Benayache, S., Mosset, P., Quintana, J., Estvez, F., Benayache, F., (2009) A Flavonoid with Cytotoxic Activity and Other Constituents from Centaurea Africana Phytochemistry Letters, 2, pp. 114-118; Shoeb, M., Jaspars, M., Macmanus, S.M., Celik, S., Nahar, L., Kong-Thoo-lin, P., Sarker, S.D., Anti-colon cancer potential of phenolic compounds from the aerial parts of Centaurea gigantea (Asteraceae) (2007) J. Nat. Med, 61, pp. 164-169; Koukoulitsa, E., Skaltsa, H., Karioti, A., Demetzos, C., Dimas, K., Bioactive sesquiterpene lactones from Centaurea species and their cytotoxic/cytostatic activity against human cell lines in vitro (2002) Planta Med, 68, pp. 649-652; Koukoulitsa, C., Geromichalos, G.D., Skaltsa, H., VolSurf analysis of pharmacokinetic properties for several antifungal sesquiterpene lactones isolated from Greek Centaurea sp (2005) J. Comput. Aided Mol. Des, 19, pp. 617-623; Orabi, K.Y., Sary, H.G., Ayoub, N.A., Singab, A.N.B., Isolation of a Bioactive Guaianolide from Centaurea aegyptiaca Ethanol Extract (2013) Planta Med, pp. 79-PN62; Parejo, I., Juregui, O., Viladomat, F., Bastida, J., Codina, C., Characterization of acylated flavonoid-Oglycosides and methoxylated flavonoids from Tagetes maxima by liquid chromatography coupled to electrospray ionization tandem mass spectrometry (2004) Rapid Commun. Mass Spectrom, 18, pp. 2801-2810; Sarg, T.M., El-Domiaty, M., El-Dahmy, S., Further guaianolides from Centaurea aegyptiaca (1987) Sci. Pharm, 55, pp. 107-110; Saroglou, V., Karioti, A., Demetzos, C., Dimas, K., Skaltsa, H., Sesquiterpene lactones from Centaurea spinosa and their antibacterial and cytotoxic activities (2005) J. Nat. Prod, 68, pp. 1404-1407; Schmeda-Hirschmann, G., Quispe, C., Gonzlez, B., Phenolic Profiling of the South American Baylahuen Tea (Haplopappus spp., Asteraceae) by HPLC-DAD-ESI-MS (2015) Molecules, 20, pp. 913-928; Stintzing, F.C., Kammerer, D., Schieber, A., Adama, H., Nacoulma, O.G., Carle, R., Betacyanins and phenolic compounds from Amaranthus spinosus L. And Boerhavia erecta L (2004) Z Naturforsch C, 59 (1-2), pp. 1-8; Vallverd-Queralt, A., Boix, N., Piqu E., Gmez-Catalan, J., Medina-Remon, A., Sasot, G., Mercader-Mart, M., Lamuela-Raventos, R.M., Identification of phenolic compounds in red wine extract samples and zebrafish embryos by HPLC-ESI-LTQ-Orbitrap-MS (2015) Food Chem, 181, pp. 146-151; Vijayan, P., Raghu, C., Ashok, G., Dhanaraj, S.A., Suresh, B., Antiviral activity of medicinal plants of Nilgiris (2004) Indian J. Med. Res, 120, pp. 24-29; Wilson, A.P., (2000) Cytotoxicity and Viability Assays in Animal Cell Culture: A Practical Approach, , 3rd ed. (ed. Masters, J. R. W.) Oxford University Press | |
dcterms.source | Scopus |