Chemical composition and potentiation of insecticidal and fungicidal activities of Citrus trifoliata L. fruits essential oil against Spodoptera littoralis, Fusarium oxysporum and Fusarium solani via nano-cubosomes

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorAbdel-Kawy M.A.
dc.contributor.authorMichel C.G.
dc.contributor.authorKirollos F.N.
dc.contributor.authorHussien R.A.A.
dc.contributor.authorAl-Mahallawi A.M.
dc.contributor.authorSedeek M.S.
dc.contributor.otherPharmacognosy Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherCairo University
dc.contributor.otherCairo
dc.contributor.otherEgypt; Fungicide
dc.contributor.otherBactericide and Nematicide Department
dc.contributor.otherCentral Agricultural Pesticides Lab (CAPL)
dc.contributor.otherAgriculture Research Center (ARC)
dc.contributor.otherGiza
dc.contributor.otherEgypt; Department of Pharmaceutics and Industrial Pharmacy
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherCairo University
dc.contributor.otherCairo
dc.contributor.otherEgypt; Department of Pharmaceutics
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Sciences and Arts (MSA)
dc.contributor.otherGiza
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:45Z
dc.date.available2020-01-09T20:40:45Z
dc.date.issued2019
dc.descriptionScopus
dc.description.abstractDevelopment of natural nano-based plant-protection formulations represents an emerging phenomenon that has been widely improved for crops protection and for enhancing the efficiency and safety of pesticides. In the present study we isolated the essential oil from the fruits of Citrus trifoliata L. and investigated it using gas chromatography-mass spectrometry analysis. Limonene (78.46%) was the major component followed by ?-Myrcene (7.94%) and Caryophyllene (4.20%). Citrus trifoliata essential oil (CTEO) loaded nano-cubosomes were successfully prepared by the emulsification technique. The insecticidal and fungicidal activities of formulated CTEO nano-cubosomes and unformulated CTEO were tested. While both of them exhibited substantial activities, CTEO nano-cubosomes were more effective than unformulated oil. It is the first time to formulate CTEO in nano-cubosomes and examine their insecticidal and fungicidal activities. In light of the current study, CTEO as it is or as nano-cubosomes is recommended as a promising candidate for pest and fungal pathogens control. � 2019, � 2019 Informa UK Limited, trading as Taylor & Francis Group.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=24819&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1080/14786419.2019.1675063
dc.identifier.doiPubMed ID 31596140
dc.identifier.issn14786419
dc.identifier.otherhttps://doi.org/10.1080/14786419.2019.1675063
dc.identifier.otherPubMed ID 31596140
dc.identifier.urihttps://t.ly/MXrDW
dc.language.isoEnglishen_US
dc.publisherTaylor and Francis Ltd.en_US
dc.relation.ispartofseriesNatural Product Research
dc.subjectOctober University for Modern Sciences and Arts
dc.subjectUniversity for Modern Sciences and Arts
dc.subjectMSA University
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectCitrus trifoliata L. fruitsen_US
dc.subjectessential oilen_US
dc.subjectfungicidalen_US
dc.subjectinsecticidalen_US
dc.subjectnano-cubosomesen_US
dc.titleChemical composition and potentiation of insecticidal and fungicidal activities of Citrus trifoliata L. fruits essential oil against Spodoptera littoralis, Fusarium oxysporum and Fusarium solani via nano-cubosomesen_US
dc.typeArticleen_US
dcterms.isReferencedByAbd-Elsalam, K.A., Omar, M.R., Asran-Amal, A., Mansour, M.T., Aly, A.-H., Evaluation of a cotton germplasm collection against Fusarium wilt race 3 isolates from Egypt (2014) Trop Plant Pathol, 39 (1), pp. 95-103; Abdel-Sattar, E., Zaitoun, A.A., Farag, M.A., El Gayed, S.H., Harraz, F., Chemical composition, insecticidal and insect repellent activity of Schinus molle L. leaf and fruit essential oils against Trogoderma granarium and Tribolium castaneum (2010) Nat Prod Res, 24 (3), pp. 226-235; Abdelbary, A.A., Abd-Elsalam, W.H., Al-Mahallawi, A.M., Fabrication of novel ultradeformable bilosomes for enhanced ocular delivery of terconazole: In vitro characterization, ex vivo permeation and in�vivo safety assessment (2016) Int J Pharm, 513 (1-2), pp. 688-696. , http://dx.doi.org/10.1016/j.ijpharm.2016.10.006, Available from; Aggarwal, K.K., Khanuja, S.P.S., Ahmad, A., Santha Kumar, T.R., Gupta, V.K., Kumar, S., Antimicrobial activity profiles of the two enantiomers of limonene and carvone isolated from the oils of Mentha spicata and Anethum sowa (2002) Flavour Fragr J, 17 (1), pp. 59-63; Chee, H.Y., Kim, H., Lee, M.H., In vitro Antifungal Activity of Limonene against Trichophyton rubrum (2009) Mycobiology, 37 (3), p. 243; El-Din, M.M., El-Gengaihi, S.E., Joint action of some botanical extracts against the Egyptian cotton leafworm Spodoptera littoralis (Boisd.)(Lepidoptera: Noctuidae) (2000) Egypt J Biol Pest Control, 10, pp. 51-56; Geraci, A., Di Stefano, V., Di Martino, E., Schillaci, D., Schicchi, R., Essential oil components of orange peels and antimicrobial activity (2017) Nat Prod Res, 31 (6), pp. 653-659; Gogoi, R., Dureja, P., Singh, P.K., Nanoformulations-A safer and effective option for agrochemicals (2009) Indian Farming, 59, pp. 7-12; Jankowska, M., Rogalska, J., Wyszkowska, J., Stankiewicz, M., Molecular targets for components of essential oils in the insect nervous system�a review (2018) Molecules, 23 (1), p. 20; Javed, S., Javaid, A., Nawaz, S., Saeed, M.K., Mahmood, Z., Siddiqui, S.Z., Ahmad, R., Phytochemistry, GC-MS analysis, antioxidant and antimicrobial potential of essential oil from five citrus species (2014) J Agric Sci, 6, p. 201; Kah, M., Beulke, S., Tiede, K., Hofmann, T., Nanopesticides: state of knowledge, environmental fate, and exposure modeling (2013) Crit Rev Environ Sci Technol, 43, pp. 1823-1867; Larena, I., Sabuquillo, P., Melgarejo, P., De Cal, A., Biocontrol of fusarium and verticillium wilt of tomato by Penicillium oxalicum under greenhouse and field conditions (2003) J Phytopathol, 151 (9), pp. 507-512; Mahato, N., Sharma, K., Koteswararao, R., Sinha, M., Baral, E.R., Cho, M.H., Citrus essential oils: Extraction, authentication and application in food preservation (2019) Crit Rev Food Sci Nutr, 59 (4), pp. 611-625; Maheshwar, P.K., Moharram, S.A., Janardhana, G.R., Detection of fumonisin producing fusarium verticillioides in paddy (Oryza sativa L.) using Polymerase Chain Reaction (PCR) (2009) Braz J Microbiol, 40 (1), pp. 134-138; Nelson, P.E., Toussoun, T.A., Frequency and pathogenicity of Fusarium solani recovered from soybeans with sudden death syndrome (1989) Plant Dis, pp. 581-584. , 73; Oboh, G., Ademosun, A.O., Olumuyiwa, T.A., Olasehinde, T.A., Ademiluyi, A.O., Adeyemo, A.C., Insecticidal activity of essential oil from orange peels (Citrus sinensis) against Tribolium confusum, Callosobruchus maculatus and Sitophilus oryzae and its inhibitory effects on acetylcholinesterase and Na+/K+-ATPase activities (2017) Phytoparasitica, 45 (4), pp. 501-508; Prates, H.T., Santos, J.P., Waquil, J.M., Fabris, J.D., Oliveira, A.B., Foster, J.E., Insecticidal activity of monoterpenes against Rhyzopertha dominica (F.) and Tribolium castaneum (Herbst) (1998) J Stored Prod Res, 34 (4), pp. 243-249; Rupe, J.C., Gbur, E.E., Jr., Effect of plant age, maturity group, and the environment on disease progress of sudden death syndrome of soybean (1995) Plant Dis, 79 (2), p. 139; Sitaramaraju, S., Prasad, N.V.V.S.D., Reddy, V.C., Narayana, E., Impact of pesticides used for crop production on the environment (2014) J Chem Pharm Sci, pp. 75-79; Saber, M.M., Al-Mahallawi, A.M., Nassar, N.N., Stork, B., Shouman, S.A., Targeting colorectal cancer cell metabolism through development of cisplatin and metformin nano-cubosomes (2018) BMC Cancer, 18 (1), pp. 1-11; Sagiri, S.S., (2014), Studies on the synthesis and characterization of encapsulated organogels for controlled drug delivery applications. PhD Thesis; Siddiqui, S.A., Islam, R., Islam, R., Jamal, A.H.M., Parvin, T., Rahman, A., Chemical composition and antifungal properties of the essential oil and various extracts of Mikania scandens (L.) Willd (2017) Arab J Chem, 10, pp. S2170-S2174. , http://dx.doi.org/10.1016/j.arabjc.2013.07.050, Available from; Svoboda, K.P., Greenaway, R.I., Investigation of volatile oil glands of Satureja hortensis L. (summer savory) and phytochemical comparison of different varieties (2003) Int J Aromather, 13 (4), pp. 196-202; Trabelsi, D., Hamdane, A.M., Ben, S.M., Abdrrabba, M., Chemical composition and antifungal activity of essential oils from flowers, leaves and peels of Tunisian Citrus aurantium against Penicillium digitatum and Penicillium italicum (2016) J Essent Oil Bear Plants, 19 (7), pp. 1660-1674; Wang, Y., Bian, W., Ren, X., Song, X., He, S., Microencapsulation of clove essential oil improves its antifungal activity against Penicillium digitatum in�vitro and green mould on Navel oranges (2018) J Hortic Sci Biotechnol, 93 (2), pp. 159-166. , https://doi.org/10.1080/14620316.2017.1345332, Available from; Yang, C., Chen, H., Chen, H., Zhong, B., Luo, X., Chun, J., Antioxidant and anticancer activities of essential oil from Gannan navel orange peel (2017) Molecules, 22 (8), p. 1391
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: