Inhibitory effect of caffeic acid phenethyl ester on mice bearing tumor involving angiostatic and apoptotic activities

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorEl-Refaei M.F.
dc.contributor.authorEl-Naa M.M.
dc.contributor.otherMolecular Biology Department
dc.contributor.otherGenetic Engineering and Biotechnology Institute
dc.contributor.otherMenoufiya University
dc.contributor.otherEgypt; Department of Pharmacology and Toxicology
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Sciences and Arts
dc.contributor.otherEgypt
dc.date.accessioned2020-01-25T19:58:33Z
dc.date.available2020-01-25T19:58:33Z
dc.date.issued2010
dc.descriptionScopus
dc.description.abstractThis study aims at investigating the anti-tumor effect of caffeic acid phenethyl ester (CAPE) against animal carcinogenesis. In order to substantiate this fact implanted tumor Ehrlich carcinoma cells were assessed in vivo to Swiss mice strain. We found that administrating of CAPE (15. mg/kg S.C.) showed that the tumor volume decreased significantly by 51%. As a result, it improved animal chances of survival and they became healthier. An anti-angiogenic effect of CAPE in vivo was observed, as determined by a significant serum matrix metalloproteinase (MMP-9) reduction (142.1. ng/ml), activation of endostatin serum level (1.9. ng/ml), as well as DNA fragmentation in tumor treated mice when compared with untreated ones. Conclusion: CAPE has a significant inhibitory effect on tumor in vivo. This inhibition may be related to its angiostatic and apoptotic effects. It also reduced angiogenic factors which may shift the equilibrium to the angiostatic effect of CAPE. These findings provide the possibility for the future use of CAPE as tumor therapy in human clinical trials. � 2010 Elsevier Ireland Ltd.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=24652&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1016/j.cbi.2010.04.019
dc.identifier.doiPubMed ID 20433813
dc.identifier.issn92797
dc.identifier.otherhttps://doi.org/10.1016/j.cbi.2010.04.019
dc.identifier.otherPubMed ID 20433813
dc.identifier.urihttps://t.ly/w15Jk
dc.language.isoEnglishen_US
dc.relation.ispartofseriesChemico-Biological Interactions
dc.relation.ispartofseries186
dc.subjectAnti-angiogenesisen_US
dc.subjectAnti-tumoren_US
dc.subjectApoptosisen_US
dc.subjectDNA fragmentationen_US
dc.subjectcaffeic acid phenethyl esteren_US
dc.subjectendostatinen_US
dc.subjectgelatinase Ben_US
dc.subjectanimal cellen_US
dc.subjectanimal experimenten_US
dc.subjectanimal modelen_US
dc.subjectantiangiogenic activityen_US
dc.subjectantineoplastic activityen_US
dc.subjectapoptosisen_US
dc.subjectarticleen_US
dc.subjectcancer inhibitionen_US
dc.subjectcancer survivalen_US
dc.subjectcontrolled studyen_US
dc.subjectDNA fragmentationen_US
dc.subjectEhrlich ascites tumoren_US
dc.subjectfemaleen_US
dc.subjectin vivo studyen_US
dc.subjectmouseen_US
dc.subjectnonhumanen_US
dc.subjectAnimalsen_US
dc.subjectAntineoplastic Agentsen_US
dc.subjectApoptosisen_US
dc.subjectCaffeic Acidsen_US
dc.subjectCarcinoma, Ehrlich Tumoren_US
dc.subjectDNA Fragmentationen_US
dc.subjectEndostatinsen_US
dc.subjectFemaleen_US
dc.subjectHumansen_US
dc.subjectMatrix Metalloproteinase 9en_US
dc.subjectMiceen_US
dc.subjectNeovascularization, Pathologicen_US
dc.subjectPhenylethyl Alcoholen_US
dc.subjectAnimaliaen_US
dc.subjectMusen_US
dc.titleInhibitory effect of caffeic acid phenethyl ester on mice bearing tumor involving angiostatic and apoptotic activitiesen_US
dc.typeArticleen_US
dcterms.isReferencedByLingwood, R., Boyle, P., Milburn, A., Ngoma, T., Arbuthnott, J., McCaffrey, R., Kerr, S., Kerr, D., The challenge of cancer control in Africa (2008) Nat. Rev. Cancer, 8, pp. 398-403; Jang, J., Kay, C., You, C., Kim, C., Bae, S., Choi, J., Yoon, S., Choi, I., Simultaneous multitarget irradiation using helical tomotherapy for advanced hepatocellular carcinoma with multiple extrahepatic metastases (2009) Int. J. Radiat. Oncol. Biol. Phys., 74, pp. 412-418; Kane, A., Yang, I., Interferon-gamma in brain tumor immunotherapy (2010) Neurosurg. Clin. N. Am., 21, pp. 77-86; Refaely, Y., Weissberg, D., Surgical management of tracheal tumors (1997) Ann. Thorac. Surg., 64, pp. 1429-1432; Hong-Fang, J., Xue-Juan, L., Hong-Yu, Z., Natural products and drug discovery (2009) EMBO Rep., 10, pp. 194-200; Aso, K., Kanno, S., Tadano, T., Satoh, S., Ishikawa, M., Inhibitory effect of propolis on the growth of human leukemia U937 (2004) Biol. Pharm. Bull., 27, pp. 727-730; Scheller, S., Krol, W., Swiacik, J., Owczarek, S., Gabrys, J., Shani, J., Antitumoral property of ethanolic extract of propolis in mice-bearing Ehrlich carcinoma, as compared to bleomycin (1989) Z. Naturforsch C., 44, pp. 1063-1065; Orsolic, N., Sver, L., Terzi?, S., Basi?, I., Peroral application of water-soluble derivative of propolis (WSDP) and its related polyphenolic compounds and their influence on immunological and antitumour activity (2005) Vet. Res. Commun., 29, pp. 575-793; Tseng, T., Lee, Y., Evaluation of natural and synthetic compounds from East Asiatic folk medicinal plants on the mediation of cancer (2006) Anticancer Agents Med. Chem., 6, pp. 347-365; Chen, M., Keng, P., Lin, P., Yang, C., Liao, S., Chen, W., Caffeic acid phenethyl ester decreases acute pneumonitis after irradiation in vitro and in vivo (2005) BMC Cancer, 5, pp. 1-9; Borrelli, F., Izzo, A., Carlo, G., Effect of a propolis extract and caffeic acid phenethyl ester on formation of aberrant crypt foci and tumors in the rat colon (2002) Fitoterapia, 73, pp. S38-S43; Fidan, H., Sahin, O., Yavuz, Y., Caffeic acid phenethyl ester reduces mortality and sepsis-induced lung injury in rats (2007) Crit. Care Med., 23. , [Epub ahead of print]; Motomura, M., Kwon, K., Suh, S., Propolis induces cell cycle arrest and apoptosis in human leukemic U937 cells through Bcl-2/Bax regulation (2008) Environ. Toxicol. Pharmacol., 26, pp. 61-67; Park, J., Lee, J., Kim, H., Immunomodulatory effect of caffeic acid phenethyl ester in Balb/c mice (2004) Int. Immunopharmacol., 4, pp. 429-436; Kubista, E., Planellas, G., Dowsett, M., Effect of tibolone on breast cancer cell proliferation in postmenopausal ER+ patients: results from STEMTrial (2007) Clin. Cancer Res., 13, pp. 4185-4190; Van't Land, B., Blijlevens, N., Marteijn, J., Role of curcumin and the inhibition of NF-?B in the onset of chemotherapy-induced mucosal barrier injury (2004) Leukemia, 18, pp. 276-284; Jae-Jun, S., Cho, J., Soon-Jae, H., Cho, C., Seok-Won, P., Sung-Won, C., Inhibitory effect of caffeic acid phenethyl ester (CAPE) on LPS-induced inflammation of human middle ear epithelial cells (2008) Acta Otolaryngol., 128, pp. 1303-1307; Guang-Yi, W., Bai, J., Xu, W., Jian-Hua, G., Anti-cancer effect of iNOS inhibitor and its correlation with angiogenesis in gastric cancer (2005) World J. Gastroenterol., 11, pp. 3830-3833; Tian, L., Yun-Guang, L., De-Min, P., Metalloproteinase-2 and -9 expression correlated with angiogenesis in human adenomyosis (2006) Gynecol. Obstet. Invest., 62, pp. 229-235; Hanahan, D., Folkman, J., Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis (1996) Cell, 86, pp. 353-364; O'Reilly, M., Boehm, T., Shing, Y., Endostatin: an endogenous inhibitor of angiogenesis and tumor growth (1997) Cell, 88, pp. 277-285; Sim, B., Angiostatin and endostatin: endothelial cell-specific endogenous inhibitors of angiogenesis and tumor growth (1998) Angiogenesis, 2, pp. 37-48; Fang, F., Chen, P., Wu, X., Therapeutic effects of recombinant human endostatin adenovirus in a mouse model of malignant pleural effusion (2009) J. Cancer Res. Clin. Oncol., 135, pp. 1149-1157; Wu, X., New strategy of antiangiogenic therapy for hepatocellular carcinoma (2008) Neoplasma, 55, pp. 472-481; Halfter, W., Dong, S., Schurer, B., Cole, G., Collagen XVIII is a basement membrane heparan sulfate proteoglycan (1998) J. Biol. Chem., 25, pp. 404-412; Dhanabal, M., Ramchandran, R., Waterman, M., Endostatin induces endothelial cell apoptosis (1999) J. Biol. Chem., 274, pp. 11721-11726; Dasyukevich, O., Solyanik, G., Comparative study of anticancer efficacy of aonitine-containing agent bc1 against ascite and solid forms of Ehrlich's carcinoma (2007) Exp. Oncol., 29, pp. 317-319; Lee, I., Boucher, Y., Jain, R., Nicotinamide can lower tumor interstitial fluid pressure: mechanistic and therapeutic implications (1992) Cancer Res., 52, pp. 3237-3240; Nicoletti, I., Migliorati, G., Pagliacci, M., Grignani, F., Riccardi, C., A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry (1991) J. Immunol. Methods, 3, pp. 271-279; Aref, S., Salama, O., Shamaa, S., El-Refaei, M., Mourkos, H., Angiogenesis factor pattern differs in acute lymphoblastic leukemia and chronic lymphocytic leukemia (2007) Hematology, 12, pp. 319-324; Jung, W., Lee, D., Choi, Y., Caffeic acid phenethyl ester attenuates allergic airway inflammation and hyperresponsiveness in murine model of ovalbumin-induced asthma (2008) Life Sci., 82, pp. 797-805; Zheng, Z., Xue, G., Grunberger, D., Prystowsky, J., Caffeic acid phenethyl ester inhibits proliferation of human keratinocytes and interferes with the EGF regulation of ornithine decarboxylase (1995) Oncol. Res., 7, pp. 445-452; Celik, S., Gorur, S., Aslantas, O., Erdogan, S., Ocak, S., Hakverdi, S., Caffeic acid phenethyl ester suppresses oxidative stress in Escherichia coli-induced pyelonephritis in rats (2007) Mol. Cell. Biochem., 297, pp. 131-138; Cavaliere, V., Papademetrio, D., Lorenzetti, M., Caffeic acid phenylethyl ester and MG-132 have apoptotic and antiproliferative effects on leukemic cells but not on normal mononuclear cells (2009) Transl. Oncol., 2, pp. 46-58; Gu, J., Gadonski, G., Wang, J., Makey, I., Adair, T., Exercise increases endoststin in circulation of health volunteers (2004) BMC Phys., 7, pp. 273-279; Kirsch, M., Schackert, G., Black, P., Metastasis and angiogenesis (2004) Cancer Treat. Res., 117, pp. 285-304; Suzuki, I., Hayashi, I., Takaki, T., Groveman, D., Fujimiya, Y., Antitumor and anticytopenic effects of aqueous extracts of propolis in combination with chemotherapeutic agents (2002) Cancer Biother. Radiopharm., 17, pp. 553-562; Melani, C., Sangaletti, S., Barazzetta, F., Werb, Z., Colombo, M., Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma (2007) Cancer Res., 67, pp. 11438-11446; Schuch, G., Oliveira-Ferrer, L., Loges, S., Antiangiogenic treatment with endostatin inhibits progression of AML in vivo (2005) Leukemia, 19, pp. 1312-1327
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: