A chloroplastic inner envelope membrane protease is essential for plant development

Loading...
Thumbnail Image

Date

2006

Journal Title

Journal ISSN

Volume Title

Type

Article

Publisher

FEBS letters

Series Info

FEBS Letters;580 (2006) 789–794

Abstract

Regulated intramembrane proteolysis (RIP) is a fundamental mechanism for controlling a wide range of cellular functions. Cleavage of membrane embedded proteins results in soluble fragments exerting their function, e.g., as transcription factors and thereby regulating gene expression. This process is highly conserved throughout all kingdom of life as are the involved proteases. RIP has been described in eukaryotes, bacteria and archea though until recently not in plant organelles. Here we describe a chloroplastic membrane protease which belongs to the conserved S2P family of membrane metallo proteases. We show that this protease is localized in the inner envelope membrane and is essential for plant development. It could function in a RIP like process regulating the concordant action in the plant cytosol, nucleus and plastids.

Description

MSA Google Scholar

Keywords

Membrane protease, Chloroplast, Arabidopsis

Citation

[1] Brown, M.S., Ye, J., Rawson, R.B. and Goldstein, J.L. (2000) Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100, 391–398. [2] Weihofen, A. and Martoglio, B. (2003) Intramembrane-cleaving proteases: controlled liberation of proteins and bioactive peptides. Trends Cell Biol. 13, 71–78. [3] Whatley, J. (1978) A suggested cycle of plastid developmental interrelationships. New Phytol. 80, 489–502. [4] Margulis, L. (1970) Origin of Eukaryotic cells, Yale University Press, New Haven, CT, USA. [5] Leister, D. (2003) Chloroplast research in the genomic age. Trends Gen. 19, 47–56. [6] Soll, J. and Schleiff, E. (2004) Protein import into chloroplasts. Nat. Rev. Mol. Cell Biol. 5, 198–208. [7] Chen, G., Bi, Y.R. and Li, N. (2005) EGY1 encodes a membraneassociated and ATP-independent metalloprotease that is required for chloroplast development. Plant J. 41, 364–375. [8] Rudner, D.Z., Fawcett, P. and Losick, R. (1999) A family of membrane-embedded metalloproteases involved in regulated proteolysis of membrane-associated transcription factors. Proc. Natl. Acad. Sci. USA 96, 14765–14770. [9] Adam, Z. and Clarke, A.K. (2002) Cutting edge of chloroplast proteolysis. Trends Plant Sci. 7, 451–456. [10] Akiyama, Y., Kanehara, K. and Ito, K. (2004) RseP (YaeL), an Escherichia coli RIP protease, cleaves transmembrane sequences. EMBO J. 23, 4434–4442.[11] Hinnah, S.C., Hill, K., Wagner, R., Schlicher, T. and Soll, J. (1997) Reconstitution of a chloroplast protein import channel. EMBO J. 16, 7351–7360. [12] Wu, T., Malinverni, J., Ruiz, N., Kim, S., Silhavy, T.J. and Kahne, D. (2005) Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121, 235–245. [13] Tranel, P.J. and Keegstra, K. (1996) A novel, bipartite transit peptide targets OEP75 to the outer membrane of the chloroplastic envelope. Plant Cell 8, 2093–2104. [14] Inoue, K., Baldwin, A.J., Shipman, R.L., Matsui, K., Theg, S.M. and Ohme-Takagi, M. (2005) Complete maturation of the plastid protein translocation channel requires a type I signal peptidase. J. Cell Biol. 171, 425–430. [15] Waegemann, K. and Soll, J. (1995) Characterization and isolation of the chloroplast protein import machinery. Meth. Cell Biol. 50, 255–267. [16] Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743. [17] Ponting, C.P. (1997) Evidence for PDZ domains in bacteria, yeast, and plants. Protein Sci. 6, 464–468. [18] Alba, B.M., Leeds, J.A., Onufryk, C., Lu, C.Z. and Gross, C.A. (2002) DegS and YaeL participate sequentially in the cleavage of RseA to activate the sigma E-dependent extracytoplasmic stress response. Gen. Dev. 16, 2156–2168. [19] Emanuelsson, O., Nielsen, H. and von Heijne, G. (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. 8, 978–984. [20] Molloy, M.P., Herbert, B.R., Walsh, B.J., Tyler, M.I., Traini, M., Sanchez, J.C., Hochstrasser, D.F., Williams, K.L. and Gooley, A.A. (1998) Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Electrophoresis 19, 837–844. [21] Kanamaru, K., Fujiwara, M., Seki, M., Katagiri, T., Nakamura, M., Mochizuki, N., Nagatani, A., Shinozaki, K., Tanaka, K. and Takahashi, H. (1999) Plastidic RNA polymerase sigma factors in Arabidopsis. Plant Cell Physiol. 40, 832–842. [22] Privat, I., Hakimi, M.-H., Buhot, L. and Favory, J.-J.a.L.-M.S. (2003) Characterization of Arabidopsis plastid sigma-like transcription factors SIG1, SIG2 and SIG3. Plant Mol. Biol. 55, 385– 399. [23] Kanamaru, K., Nagashima, A., Fujiwara, M., Shimada, H., Shirano, Y., Nakabayashi, K., Shibata, D., Tanaka, K. and Takahashi, H. (2001) An Arabidopsis sigma factor (SIG2)- dependent expression of plastid-encoded tRNAs in chloroplasts. Plant Cell Physiol. 42, 1034–1043.

Full Text link