Dual Targeting of Steroid Sulfatase (STS) and 17β-Hydroxysteroid Dehydrogenase Type 1 (17β-HSD1) by a Novel Drug-Prodrug Approach: A Potential Therapeutic Option for the Treatment of Endometriosis

Loading...
Thumbnail Image

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society

Series Info

Journal of Medicinal Chemistry;65(17):11726-11744

Orcid

Abstract

A novel approach for the dual inhibition of steroid sulfatase (STS) and 17β-hydroxysteroid dehydrogenase type 1(17β HSD1) by a single drug was explored, starting from in-house 17β HSD1 inhibitors via masking their phenolic OH group with a sulfamate ester. The sulfamates were intentionally designed as drugs for the inhibition of STS and, at the same time, prodrugs for 17β-HSD1 inhibition ("drug-prodrug approach"). The most promising sulfamates 13, 16, 18-20, 22-24, 36, and 37 showed nanomolar IC50 values for STS inhibition in a cellular assay and their corresponding phenols displayed potent 17β-HSD1 inhibition in cell-free and cellular assays, high selectivity over 17β-HSD2, reasonable metabolic stability, and low estrogen receptor α affinity. A close relationship was found between the liberation of the phenolic compound by sulfamate hydrolysis and 17β-HSD1 inactivation. These results showed that the envisaged drug-prodrug concept was successfully implemented. The novel compounds constitute a promising class of therapeutics for the treatment of endometriosis and other estrogen-dependent diseases.

Description

SJR 2024 1.801 Q1 H-Index 314

Citation

Mohamed, A., Salah, M., Tahoun, M., Hawner, M., Abdelsamie, A. S., & Frotscher, M. (2022). Dual Targeting of Steroid Sulfatase and 17β-Hydroxysteroid Dehydrogenase Type 1 by a Novel Drug-Prodrug Approach: A Potential Therapeutic Option for the Treatment of Endometriosis. Journal of Medicinal Chemistry, 65(17), 11726–11744. https://doi.org/10.1021/acs.jmedchem.2c00589 ‌

Endorsement

Review

Supplemented By

Referenced By