Using chitosan nanoparticles as drug carriers for the development of a silver sulfadiazine wound dressing

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorEl-Feky G.S.
dc.contributor.authorSharaf S.S.
dc.contributor.authorEl Shafei A.
dc.contributor.authorHegazy A.A.
dc.contributor.otherPharmaceutical Technology Department
dc.contributor.otherNational Research Center
dc.contributor.otherDokki
dc.contributor.otherCairo
dc.contributor.otherEgypt; Faculty of Pharmacy
dc.contributor.otherOctober University for Modern Sciences and Arts
dc.contributor.otherEgypt; Textile Research Division
dc.contributor.otherNational Research Center
dc.contributor.otherDokki
dc.contributor.otherCairo
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:41:23Z
dc.date.available2020-01-09T20:41:23Z
dc.date.issued2017
dc.descriptionScopus
dc.description.abstractBurn wounds environment favors the growth of micro-organisms causing delay in wound healing. The traditional treatment with antimicrobial creams offer inaccurate doses. In the present study, a dressing coated with silver sulfadiazine (SSD) loaded chitosan nanoparticles (CSNPs) for the controlled-release of SSD into burn wound to control bacterial growth was investigated. CSNPs were formulated with different concentrations of chitosan and CM-?-CD and loaded with SSD complexed in 1:1 molar ratio with CM-?-CD, CSNPs were assessed for their particle size, polydispersity index, morphology and association efficiency. The formula showing the best characteristics was selected for the preparation of SSD loaded CSNPs wound dressing through a padding process with/without the use of cross-linker. The dressing was characterized for its physical properties, in addition, FTIR, X-ray, SEM and in vitro release were used for characterization. The dressing was proven effective for the inhibition of the growth of Gram positive and Gram negative bacteria as well as candida on an infected wound. 2016 Elsevier Ltden_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=25801&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1016/j.carbpol.2016.11.054
dc.identifier.doiPubMed ID 28024533
dc.identifier.issn1448617
dc.identifier.otherhttps://doi.org/10.1016/j.carbpol.2016.11.054
dc.identifier.otherPubMed ID 28024533
dc.identifier.urihttps://t.ly/ZK57B
dc.language.isoEnglishen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofseriesCarbohydrate Polymers
dc.relation.ispartofseries158
dc.subjectChitosan nanoparticlesen_US
dc.subjectSilver sulfadiazineen_US
dc.subjectWound dressingen_US
dc.subjectBacteriaen_US
dc.subjectChitinen_US
dc.subjectChitosanen_US
dc.subjectMicroorganismsen_US
dc.subjectNanoparticlesen_US
dc.subjectParticle sizeen_US
dc.subjectAssociation efficiencyen_US
dc.subjectBacterial growthen_US
dc.subjectChitosan nanoparticlesen_US
dc.subjectControlled releaseen_US
dc.subjectGram-negative bacteriaen_US
dc.subjectPolydispersity indicesen_US
dc.subjectSilver sulfadiazinesen_US
dc.subjectWound dressingsen_US
dc.subjectSilveren_US
dc.subjectantifungal agenten_US
dc.subjectchitosanen_US
dc.subjectdrug carrieren_US
dc.subjectnanoparticleen_US
dc.subjectsulfadiazine silveren_US
dc.subjectbandageen_US
dc.subjectchemistryen_US
dc.subjectAntifungal Agentsen_US
dc.subjectBandagesen_US
dc.subjectChitosanen_US
dc.subjectDrug Carriersen_US
dc.subjectNanoparticlesen_US
dc.subjectSilver Sulfadiazineen_US
dc.titleUsing chitosan nanoparticles as drug carriers for the development of a silver sulfadiazine wound dressingen_US
dc.typeArticleen_US
dcterms.isReferencedByAdhya, A., Bain, J., Ray, O., Hazra, A., Adhikari, S., Dutta, G., Healing of burn wounds by topical treatment: A randomized controlled comparison between silver sulfadiazine and nano-crystalline silver (2014) Journal of Basic and Clinical Pharmacy, 6, pp. 29-34; Agnihotri, S., Bajaj, G., Mukherji, S., Mukherji, S., Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: An enhanced and reusable antibacterial substrate without human cell cytotoxicity (2015) Nanoscale, 7, pp. 7415-7429; Altiok, D., Altiok, E., Tihminlioglu, F., Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing applications (2010) Journal of Materials Science, 21, pp. 2227-2236; Ammar, H.O., El-Nahhas, S.A., Ghorab, M.M., Salama, A.H., Chitosan/cyclodextrin nanoparticles as drug delivery system (2012) Journal of Inclusion Phenomena and Macrocyclic Chemistry, 72, pp. 127-136; Azuma, K., Izumi, R., Osaki, T., Ifuku, S., Morimoto, M., Saimoto, H., Chitin, chitosan, and its derivatives for wound healing: Old and new materials (2015) Journal of Functional Biomaterials, 13, pp. 104-142; Berger, J., Reist, M., Mayer, J.M., Felt, O., Gurny, R., Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications (2004) European Journal of Pharmaceutics and Biopharmaceutics, 57, pp. 35-52; Boateng, J.S., Matthews, K.H., Stevens, H.N.E., Eccleston, G.M., Wound healing dressings and drug delivery systems: A review (2008) Journal of Pharmaceutical Sciences, 97, pp. 2892-2923; Calvo, P.C., Remunan-Lopez, J., Vila-Jato, L., Alonso, M.J., Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers (1997) Journal of Applied Polymer Science, 63, pp. 125-132; Dellera, E., Bonferoni, M.C., Sandri, G., Rossi, S., Ferrari, F., Del Fante, C., Development of chitosan oleate ionic micelles loaded with silver sulfadiazine to be associated with platelet lysate for application in wound healing (2014) European Journal of Pharmaceutics and Biopharmaceutics, 88, pp. 643-650; Dobaria, N., Badhan, A., Mashru, R., A novel itraconazole bioadhesive film for vaginal delivery: Design, optimization, and physicodynamic characterization (2009) AAPS PharmSciTech, 10, pp. 951-959; El-Tahlawy Kh, F., El-Bendary, M.A., El-Hendawy, A.G., Hudson, S.M., The antimicrobial activity of cotton fabric treated with different crosslinking agents and chitosan (2005) Carbohydrate Polymers, 60 (4), pp. 421-430; Garc�a, A., Leonardi, D., Salazar, M.O., Lamas, M.C., Modified ?-cyclodextrin inclusion complex to improve the physicochemical properties of albendazole. Complete in vitro evaluation and characterization (2014) PLoS One, 9 (2), p. e88234; Gear, A.J., Hellewell, T.B., Wright, H.R., Mazzarese, P.M., Arnold, P.B., Rodeheaver, G.T., A new silver sulfadiazine water soluble gel? (1997) Burns, 23 (5), pp. 387-391; Hegazy, A.A., Sharaf, S., El-Feky, G.S., El-Shafei, A., Preparation and evaluation of the inclusion complex of silver sulfadiazine with cyclodextrin (2013) International Journal of Pharmacy and Pharmaceutical Sciences, 5, pp. 462-468; Ivanov, L.V., Nabokova, T.D., Korobeinik, V.V., Yasnitsky, B.Y., Medvedeva, T.V., Sukhinina, T.V., Effects of modified polysaccharides on nitazol bioavailability in oral-administration (1992) Khimiko-Farmatsevticheskii Zhurnal, 26, pp. 38-41; Jayakumar, R., Deepthy Menon, K., Manzoor, S.V., Nair, H.T., Biomedical applications of chitin and chitosan based nanomaterials�A short review (2010) Carbohydrate Polymers, 82, pp. 227-232; Kirsner, R.S., Orstead, H., Wright, J.B., Matrix metalloproteinases in normal and impaired wound healing: A potential role for nanocrystalline silver (2001) Wounds, 13 (3 Suppl. C), pp. 5-12; Knaul, J., Hooper, M., Chanyi, C., Creber, K.A.M., Improvements in the drying process for wet-spun chitosan fibers (1998) Journal of Applied Polymer Science, 69, pp. 1435-1444; Knaul, J.Z., Hudson, S.M., Creber, K.A.M., Crosslinking of chitosan fibers with dialdehydes: Proposal of a new reaction mechanism (1999) Journal of Polymer Science Part B-Polymer Physics, 37, pp. 1079-1094; Koyama, Y., Taniguchi, A., Huang, C.P., Blakenship, D.W., Studies on chitin.X. Homogenous cross-linking of chitosan for enhanced cupric ion adsorption (1986) Journal of Applied Polymer Science, 131, p. 1951; Krauland, A.H., Alonso, M.J., Chitosan/cyclodextrin nanoparticles as macromolecular drug delivery system (2007) International Journal of Pharmaceutics, 340, pp. 134-142; Oyarzun-Ampuero, F.A., Brea, J., Loza, M.I., Torres, D., Alonso, M.J., Chitosan-hyaluronic acid nanoparticles loaded with heparin for the treatment of asthma? (2009) International Journal of Pharmaceutics, 381 (2), pp. 122-129; Perrin, C., Coussot, G., Lefebrve, I., Perigaud, C., Fabre, H., Separation of 3-azido-2, 3-dideoxythymidine pronucleotide diastereoisomers in biological samples by CZE with cyclodextrin addition (2006) Journal of Chromatography A, 1111, pp. 139-146; Pranoto, Y., Rakshit, S.K., Salokhe, V.M., Physical and antibacterial properties of alginate-based edible film incorporated with garlic oil (2005) Food Research International, 38 (3), pp. 267-272; Rosen, J., Landriscina, A., Kutner, A., Adler, B.L., Krausz, A.E., Nosanchuk, J.D., Silver sulfadiazine retards wound healing in mice via alterations in cytokine expression (2015) Journal of Investigative Dermatology, 135, p. 1459; Saito, H., Tabeta, K., Ogawa, K., High-resolution solid state 13C NMR study of chitosan and its salts with acids (1987) Macromolecules, 20, p. 2424; Salas Campos, L., Fernandes Mansilla, M., Martinez de la Chica, A.M., Topical chemotherapy for the treatment of burns (2005) Revista de Enfermeria, 28 (5), pp. 67-70; Sathianarayanan, M.P., Bhat, N.V., Kokate, S.S., Walunj, V.E., Antibacterial finish for cotton fabric from herbal products (2010) Indian Journal of Fibre & Textile Research, 35, pp. 50-58; Shigeyama, M., Oogaya, T., Yoneyama, T., Futamura, M., Murakawa, T., Shibata, H., Preparation of a gel-forming ointment base applicable to the recovery stage of bedsore and clinical evaluation of a treatment method with different ointment bases suitable to each stage of bedsore (2001) Yakugaku Zasshi, 121, pp. 441-450; Shigeyama, M., Preparation of a gel-forming ointment base applicable to the recovery stage of bedsore and clinical evaluation of a treatment method with different ointment bases suitable to each stage of bedsore (2004) Yakugaku Zasshi, 124, pp. 55-67; Solomons, T.W.G., Organic chemical (1980), pp. 703-714. , Wiley New York; Vogel, A.I., Elementary practical organic chemistry: Part (3). Quantitative organic chemistry (1975), p. 625. , 2nd ed. Longman Group Limited London; Wittaya-areekul, S., Prahsarn, C., Development and in vitro evaluation of chitosan-polysaccharides composite wound dressings (2006) International Journal of Pharmaceutics, 313, pp. 123-128; Xiao, C., Zhang, J., Zhang, Z., Zhang, L., Study of blend films from chitosan and hydroxypropyl guar gum (2003) Journal of Applied Polymer Science, 90, pp. 1991-1995; Yagi, M., Kato, S., Nishitoba, T., Sato, H., Kobayashi, N., Iinuma, N., Effects of chitosan-coated dialdehyde cellulose, a newly developed oral adsorbent, on glomerulonephritis induced by anti-Thy-1 antibody in rats (1998) Nephron, 78, pp. 433-439
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_128.png
Size:
2.73 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
1-s2.0-S0144861716313285-mainSSDdressing.pdf
Size:
1.56 MB
Format:
Adobe Portable Document Format
Description: