Effect of Gallic acid in potentiating chemotherapeutic effect of Paclitaxel in HeLa cervical cancer cells
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Aborehab N.M. | |
dc.contributor.author | Osama N. | |
dc.contributor.other | Department of Biochemistry | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | October University for Modern Sciences and Arts (MSA University) | |
dc.contributor.other | Giza | |
dc.contributor.other | 12611 | |
dc.contributor.other | Egypt; Department of Biochemistry | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Menoufia University | |
dc.contributor.other | Menoufia | |
dc.contributor.other | 32511 | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:40:37Z | |
dc.date.available | 2020-01-09T20:40:37Z | |
dc.date.issued | 2019 | |
dc.description | Scopus | |
dc.description.abstract | Background: Cervical cancer is the fourth most common cancer affecting women worldwide. Paclitaxel/Carboplatin is one of the most commonly prescribed regimens in cervical cancer treatment. Although chemotherapeutic drugs are very effective, severe side effects and development of drug resistance limits the use of these drugs. The use of natural products with anticancer activity may help to partially overcome these issues. Methods: In the present study, we investigated the ability of Gallic acid, to potentiate the anti-cancer effects of Paclitaxel, Carboplatin and Paclitaxel/Carboplatin combination in human HeLa cells by performing MTT assay, cell cycle analysis and RT-PCR assay and Western blotting for some apoptotic markers. Results: Our results revealed that the highest cytotoxic effect, the highest induction of apoptosis and significant elevation in P53 and Caspase 3 levels was seen in Paclitaxel/Gallic acid combination. Conclusion: These results indicate that Gallic acid potentiates Paclitaxel effect and that Paclitaxel/Gallic acid combination could represent a promising alternative with lower side effects-for Paclitaxel/Carboplatin combination in treatment of cervical cancer treatment. � 2019 The Author(s). | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=29094&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1186/s12935-019-0868-0 | |
dc.identifier.doi | PubMed ID : | |
dc.identifier.issn | 14752867 | |
dc.identifier.other | https://doi.org/10.1186/s12935-019-0868-0 | |
dc.identifier.other | PubMed ID : | |
dc.identifier.uri | https://t.ly/OX3BA | |
dc.language.iso | English | en_US |
dc.publisher | BioMed Central Ltd. | en_US |
dc.relation.ispartofseries | Cancer Cell International | |
dc.relation.ispartofseries | 19 | |
dc.subject | Caspase 3 | en_US |
dc.subject | Gallic acid | en_US |
dc.subject | HeLa cells | en_US |
dc.subject | P53 | en_US |
dc.subject | Paclitaxel | en_US |
dc.subject | carboplatin | en_US |
dc.subject | caspase 3 | en_US |
dc.subject | gallic acid | en_US |
dc.subject | paclitaxel | en_US |
dc.subject | protein p53 | en_US |
dc.subject | antineoplastic activity | en_US |
dc.subject | apoptosis | en_US |
dc.subject | Article | en_US |
dc.subject | cell cycle progression | en_US |
dc.subject | cell viability | en_US |
dc.subject | controlled study | en_US |
dc.subject | cytotoxicity | en_US |
dc.subject | drug effect | en_US |
dc.subject | drug efficacy | en_US |
dc.subject | drug mechanism | en_US |
dc.subject | drug potentiation | en_US |
dc.subject | drug response | en_US |
dc.subject | female | en_US |
dc.subject | HeLa cell line | en_US |
dc.subject | human | en_US |
dc.subject | human cell | en_US |
dc.subject | IC50 | en_US |
dc.subject | MTT assay | en_US |
dc.subject | real time polymerase chain reaction | en_US |
dc.subject | Western blotting | en_US |
dc.title | Effect of Gallic acid in potentiating chemotherapeutic effect of Paclitaxel in HeLa cervical cancer cells | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Cancer, , https://www.who.int/news-room/fact-sheets/detail/cancer, Accessed 1 May 2019; Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries (2018) CA A Cancer J Clin., 68 (6), pp. 394-424; Adhami, V.M., Malik, A., Zaman, N., Sarfaraz, S., Siddiqui, I.A., Syed, D.N., Afaq, F., Mukhtar, H., Combined inhibitory effects of green tea polyphenols and selective cyclooxygenase-2 inhibitors on the growth of human prostate cancer cells both in vitro and in vivo (2007) Clin Cancer Res, 13 (5), pp. 1611-1619. , 1:CAS:528:DC%2BD2sXitlSjtb4%3D; Albain, K.S., Nag, S.M., Calderillo-Ruiz, G., Jordaan, J.P., Llombart, A.C., Pluzanska, A., Rolski, J., Sekhon, J.S., Gemcitabine plus Paclitaxel versus Paclitaxel monotherapy in patients with metastatic breast cancer and prior anthracycline treatment (2008) J Clin Oncol, 26 (24), pp. 3950-3957; Mokhtari, R.B., Kumar, S., Islam, S.S., Yazdanpanah, M., Adeli, K., Cutz, E., Yeger, H., Combination of carbonic anhydrase inhibitor, acetazolamide, and sulforaphane, reduces the viability and growth of bronchial carcinoid cell lines (2013) BMC Cancer, 13, p. 378; Guidance on the Use of Paclitaxel in the Treatment of Ovarian Cancer, , https://www.nice.org.uk/guidance/ta55, Accessed 1 May 2019; Stordal, B., Davey, M., Understanding cisplatin resistance using cellular models (2007) IUBMB Life, 59 (11), pp. 696-699. , 1:CAS:528:DC%2BD2sXht1aiu77O; Jordan, M.A., Wilson, L., Microtubules as a target for anticancer drugs (2004) Nat Rev Cancer, 4 (4), pp. 253-265. , 1:CAS:528:DC%2BD2cXis1Gmt74%3D; Ozols, R.F., Bundy, B.N., Greer, B.E., Fowler, J.M., Clarke-Pearson, D., Burger, R.A., Mannel, R.S., Baergen, R., Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: A Gynecologic Oncology Group study (2003) J Clin Oncol, 21 (17), pp. 3194-3200. , 1:CAS:528:DC%2BD2cXps1aktbk%3D; Stewart, D.J., Mechanisms of resistance to cisplatin and carboplatin (2007) Crit Rev Oncol/Hematol, 63 (1), pp. 12-31; Frazier, A.L., Stoneham, S., Rodriguez-Galindo, C., Dang, H., Xia, C., Olson, T.A., Murray, M.J., Pashankar, F., Comparison of carboplatin versus cisplatin in the treatment of paediatric extracranial malignant germ cell tumours: A report of the Malignant Germ Cell International Consortium (2018) Eur J Cancer, 98, pp. 30-37. , 1:CAS:528:DC%2BC1cXosFyms7o%3D; Jiang, S., Pan, A.W., Lin, T.Y., Zhang, H., Malfatti, M., Turteltaub, K., Henderson, P.T., Pan, C.X., Paclitaxel enhances carboplatin-dna adduct formation and cytotoxicity (2015) Chem Res Toxicol, 28 (12), pp. 2250-2252. , 1:CAS:528:DC%2BC2MXhslyktb%2FN; Bhattacharya, S., Muhammad, N., Steele, R., Kornbluth, J., Ray, R.B., Bitter Melon enhances natural killer-mediated toxicity against head and neck cancer cells (2017) Cancer Prev Res, 10 (6), pp. 337-344. , 1:CAS:528:DC%2BC2sXpt1SgsLw%3D; Wright, G.D., Opportunities for natural products in 21(st) century antibiotic discovery (2017) Nat Prod Rep, 34 (7), pp. 694-701. , 1:CAS:528:DC%2BC2sXptFCmsLg%3D; Yao, H., Liu, J., Xu, S., Zhu, Z., Xu, J., The structural modification of natural products for novel drug discovery (2017) Expert Opin Drug Discov, 12 (2), pp. 121-140. , 1:CAS:528:DC%2BC2sXivVek; Muhammad, N., Steele, R., Isbell, T.S., Philips, N., Ray, R.B., Bitter melon extract inhibits breast cancer growth in preclinical model by inducing autophagic cell death (2017) Oncotarget, 8 (39), pp. 66226-66236; Bhattacharya, S., Muhammad, N., Steele, R., Peng, G., Ray, R.B., Immunomodulatory role of bitter melon extract in inhibition of head and neck squamous cell carcinoma growth (2016) Oncotarget, 7 (22), pp. 33202-33209; Sun, J., Chu, Y.F., Wu, X., Liu, R.H., Antioxidant and antiproliferative activities of common fruits (2002) J Agric Food Chem, 50 (25), pp. 7449-7454. , 1:CAS:528:DC%2BD38XosFSnsb8%3D; Dai, J., Mumper, R.J., Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties (2010) Molecules, 15 (10), pp. 7313-7352. , 1:CAS:528:DC%2BC3cXhtl2kur3K; De, A., De, A., Papasian, C., Hentges, S., Banerjee, S., Haque, I., Banerjee, S.K., Emblica officinalis extract induces autophagy and inhibits human ovarian cancer cell proliferation, angiogenesis, growth of mouse xenograft tumors (2013) PLoS ONE, 8 (8), p. e72748. , 1:CAS:528:DC%2BC3sXhtlGjtL%2FL; Sourani, Z.M., Pourgheysari, B.P., Beshkar, P.M., Shirzad, H.P., Shirzad, M.M., Gallic Acid inhibits proliferation and induces apoptosis in lymphoblastic leukemia cell line (C121) (2016) Iran J Med Sci, 41 (6), pp. 525-530; Yoshino, M., Haneda, M., Naruse, M., Htay, H.H., Iwata, S., Tsubouchi, R., Murakami, K., Prooxidant action of gallic acid compounds: Copper-dependent strand breaks and the formation of 8-hydroxy-2?-deoxyguanosine in DNA (2002) Toxicol in Vitro, 16 (6), pp. 705-709. , 1:CAS:528:DC%2BD38Xotlylsrc%3D; De Mejia, E.G., Ramirez-Mares, M.V., Puangpraphant, S., Bioactive components of tea: Cancer, inflammation and behavior (2009) Brain Behav Immun, 23 (6), pp. 721-731; He, Z., Li, B., Rankin, G.O., Rojanasakul, Y., Chen, Y.C., Selecting bioactive phenolic compounds as potential agents to inhibit proliferation and VEGF expression in human ovarian cancer cells (2015) Oncol Lett, 9 (3), pp. 1444-1450; Han, Y.H., Park, W.H., Growth inhibition in antimycin A treated-lung cancer Calu-6 cells via inducing a G1 phase arrest and apoptosis (2009) Lung Cancer, 65 (2), pp. 150-160; Burnette, W., Western blotting": Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A (1981) Anal Biochem, 112, pp. 195-203. , 1:CAS:528:DyaL3MXhvVOqtbs%3D; Sambrook, J., Fritsch, E.F., Maniatis, T., (1989) Molecular Cloning: A Laboratory Manual, , Cold Spring Harbor Cold Spring Harbor Laboratory; You, B.R., Moon, H.J., Han, Y.H., Park, W.H., Gallic acid inhibits the growth of HeLa cervical cancer cells via apoptosis and/or necrosis (2010) Food Chem Toxicol, 48 (5), pp. 1334-1340. , 1:CAS:528:DC%2BC3cXks1ShtrY%3D; You, B.R., Kim, S.Z., Kim, S.H., Park, W.H., Gallic acid-induced lung cancer cell death is accompanied by ROS increase and glutathione depletion (2011) Mol Cell Biochem, 357 (1-2), pp. 295-303. , 1:CAS:528:DC%2BC3MXhtlSksrjE; You, B.R., Park, W.H., Gallic acid-induced lung cancer cell death is related to glutathione depletion as well as reactive oxygen species increase (2010) Toxicol in Vitro, 24 (5), pp. 1356-1362. , 1:CAS:528:DC%2BC3cXntVyntbc%3D; Park, W.H., Gallic acid induces HeLa cell death via increasing GSH depletion rather than ROS levels (2017) Oncol Rep, 37 (2), pp. 1277-1283. , 1:CAS:528:DC%2BC1cXisFyis70%3D; Dorniani, D., Saifullah, B., Barahuie, F., Arulselvan, P., Hussein, M.Z., Fakurazi, S., Twyman, L.J., Graphene oxide-Gallic Acid nanodelivery system for cancer therapy (2016) Nanoscale Res Lett, 11 (1), p. 491; Mosmann, T., Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays (1983) J Immunol Methods, 65 (1-2), pp. 55-63. , 1:STN:280:DyaL2c%2FovFSmtw%3D%3D; Barltrop, J.A., Owen, T.C., Cory, A.H., Cory, J.G., 5-(3-Carboxymethoxyphenyl)-2-(4,5-dimethylthiazolyl)-3-(4-sulfophenyl) tetrazolium, inner salt (MTS) and related analogs of 3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide (MTT) reducing to purple water-soluble formazans as cell-viability indicators (1991) Bioorg Med Chem Lett., 1, pp. 611-614. , 1:CAS:528:DyaK38XitlGmsL0%3D; Ishiyama, M., Miyazono, Y., Sasamoto, K., Ohkura, Y., Ueno, K., A highly water-soluble disulfonated tetrazolium salt as a chromogenic indicator for NADH as well as cell viability (1997) Talanta, 44 (7), pp. 1299-1305. , 1:CAS:528:DyaK2sXktVWgsL0%3D; He, Y., Zhu, Q., Chen, M., Huang, Q., Wang, W., Li, Q., Huang, Y., Di, W., The changing 50% inhibitory concentration (IC50) of cisplatin: A pilot study on the artifacts of the MTT assay and the precise measurement of density-dependent chemoresistance in ovarian cancer (2016) Oncotarget, 7 (43), pp. 70803-70821. , 27683123 5342590; Chen, Y.J., Lin, K.N., Jhang, L.M., Huang, C.H., Lee, Y.C., Chang, L.S., Gallic acid abolishes the EGFR/Src/Akt/Erk-mediated expression of matrix metalloproteinase-9 in MCF-7 breast cancer cells (2016) Chem Biol Interact, 252, pp. 131-140. , 1:CAS:528:DC%2BC28XmslSmtbY%3D; Zhao, B., Hu, M., Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells (2013) Oncol Lett, 6 (6), pp. 1749-1755. , 1:CAS:528:DC%2BC3sXhvFOmsrjM; Verma, S., Singh, A., Mishra, A., Gallic acid: Molecular rival of cancer (2013) Environ Toxicol Pharmacol, 35 (3), pp. 473-485. , 1:CAS:528:DC%2BC3sXlt1CgtLY%3D; Ou, T.T., Wang, C.J., Lee, Y.S., Wu, C.H., Lee, H.J., Gallic acid induces G2/M phase cell cycle arrest via regulating 14-3-3beta release from Cdc25C and Chk2 activation in human bladder transitional carcinoma cells (2010) Mol Nutr Food Res, 54 (12), pp. 1781-1790. , 1:CAS:528:DC%2BC3cXhsFSlur%2FI; Agarwal, C., Singh, R.P., Dhanalakshmi, S., Tyagi, A.K., Tecklenburg, M., Sclafani, R.A., Agarwal, R., Silibinin upregulates the expression of cyclin-dependent kinase inhibitors and causes cell cycle arrest and apoptosis in human colon carcinoma HT-29 cells (2003) Oncogene, 22 (51), pp. 8271-8282. , 1:CAS:528:DC%2BD3sXovVyms7c%3D; Taylor, W.R., Stark, G.R., Regulation of the G2/M transition by p53 (2001) Oncogene, 20 (15), pp. 1803-1815. , 1:CAS:528:DC%2BD3MXivFKhtr4%3D; Martin, P., Pognonec, P., ERK and cell death: Cadmium toxicity, sustained ERK activation and cell death (2010) FEBS J, 277 (1), pp. 39-46. , 1:CAS:528:DC%2BC3cXhs1Gnug%3D%3D; Tsujimoto, Y., Cell death regulation by the Bcl-2 protein family in the mitochondria (2003) J Cell Physiol, 195 (2), pp. 158-167. , 1:CAS:528:DC%2BD3sXislOmtb4%3D; Fridman, J.S., Lowe, S.W., Control of apoptosis by p53 (2003) Oncogene, 22 (56), pp. 9030-9040. , 1:CAS:528:DC%2BD3sXpsFOmsrk%3D; Flatt, P.M., Tang, L.J., Scatena, C.D., Szak, S.T., Pietenpol, J.A., P53 regulation of G(2) checkpoint is retinoblastoma protein dependent (2000) Mol Cell Biol, 20 (12), pp. 4210-4223. , 1:CAS:528:DC%2BD3cXjvFWrs78%3D; Wang, R., Ma, L., Weng, D., Yao, J., Liu, X., Jin, F., Gallic acid induces apoptosis and enhances the anticancer effects of cisplatin in human small cell lung cancer H446 cell line via the ROS-dependent mitochondrial apoptotic pathway (2016) Oncol Rep, 35 (5), pp. 3075-3083. , 1:CAS:528:DC%2BC2sXjtVOrur0%3D; Thornberry, N.A., Lazebnik, Y., Caspases: Enemies within (1998) Science, 281 (5381), pp. 1312-1316. , 1:CAS:528:DyaK1cXlvVegsLs%3D; Sanchez-Carranza, J.N., Diaz, J.F., Redondo-Horcajo, M., Barasoain, I., Alvarez, L., Lastres, P., Romero-Estrada, A., Gonzalez-Maya, L., Gallic acid sensitizes paclitaxel-resistant human ovarian carcinoma cells through an increase in reactive oxygen species and subsequent downregulation of ERK activation (2018) Oncol Rep, 39 (6), pp. 3007-3014. , 1:CAS:528:DC%2BC1cXitl2msr%2FE 29693189; Johnson, G.L., Lapadat, R., Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases (2002) Science, 298 (5600), pp. 1911-1912. , 1:CAS:528:DC%2BD38Xpt1Wisbc%3D | |
dcterms.source | Scopus |