Antihyperglycemic and antihyperlipidemic effects of the methanol extracts of Cleome ramosissima Parl., Barleria bispinosa (Forssk.) Vahl. and Tribulus macropterus Boiss.
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Ezzat, Shahira M | |
dc.contributor.author | Abdel-Sattar, Essam | |
dc.contributor.author | M. Harraz, Fathalla | |
dc.contributor.author | A. Ghareib, Salah | |
dc.date.accessioned | 2019-10-21T06:30:14Z | |
dc.date.available | 2019-10-21T06:30:14Z | |
dc.date.issued | 2014 | |
dc.description | MSA Google Scholar | |
dc.description.abstract | The antihyperglycemic and antihyperlipidemic effects of the methanolic extracts of the aerial parts of Cleome ramosissima Parl. (Cleomaceae), Barleria bispinosa (Forssk.) Vahl. (Acanthaceae) and Tribulus macropterus Boiss. (Zygophyllaceae) were evaluated in streptozotocin (STZ) induced diabetic rats at a dose of 500 mg/kg bw. The reduction in fasting blood glucose level (BGL) was observed in the following order C. ramosissima, B. bispinosa and T. macropterus at the 4th week of administration. C. ramosissima and T. macropterus also showed significant increase in plasma insulin by 100.6% and 189.9%, respectively. The studied plant extracts induced an increase in both utilization and tolerance of glucose in diabetic rats. The hypolipidemic effect of C. ramosissima and T. macropterus was demonstrated by a significant reduction in plasma total cholesterol (TC) (42.6% and 37.2%, respectively) and low density lipoprotein cholesterol (LDL-C) (48.0% and 42.1%, respectively) and the increase of high density lipoprotein cholesterol (HDL-C) by 81.0% and 91.9%, respectively. B. bispinosa decreased the blood levels of LDL-C | en_US |
dc.description.sponsorship | Faculty of Pharmacy, Cairo University | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=21100853576&tip=sid&clean=0 | |
dc.identifier.citation | 1. Ramachandran SA, Naveen KR, Rajinikanth B, Kbar M, Rajasekaran A. Antidiabetic, antihyperlipidemic and in vivo antioxidant potential of aqueous extract of Anogeissus latifolia bark in type 2 diabetic rats. Asian Pac J Trop Dis 2012;S596–602. 2. Goldstein JL, Schrott HG, Hazzard WR, Bierman EL, Motulsky AG. Hyperlipidemia in coronary heart disease 11, genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest 1973;52:1544–68. 3. Kaur J, Singh P, Sowers JR. Diabetes and cardiovascular diseases. Am J Ther 2002;9:510–5. 4. Sheetz MJ. Molecular understanding of hyperglycemias adverse effects for diabetic complications. J Am Med Assoc 2002;288:2579–88. 5. Prasad SK, Kulshreshtha A, Qureshi TN. Antidiabetic activity of some herbal plants in streptozotocin induced diabetic albino rats. Pak J Nutr 2005;8:551–7. 6. Patel SS, Shah RS, Goyal RK. Antihyperglycemic, antihyperlipidemic and antioxidant effects of Dihar, a poly herbal ayurvedic formulation in streptozotocin induced diabetic rats. Indian J Exp Biol 2009;47:564–70. 7. Suba V, Murugesan T, Bhaskana R, Rao L, Ghosh MP, Mandal SC, et al. Antidiabetic potential of Barleria lupulina. Fitoterapia 2004;75:1–4. 8. Yang SS, Mabry TJ, El-Fishawy AM, El-Kashoury EA, Abdel- Kawy MA, Soliman FM. Flavonoids of Cleome droserifolia (Forssk.) Del.. Egypt J Pharm Sci 1990;31:443–51. 9. Yaniv Z, Dafni A, Friedman J, Palevitch D. Plants used for the treatment of diabetes in Israel. J Ethnopharmacol 1987;1987(19): 145–51. 10. Nicola WG, Ibrahim KM, Mikhail TH, Girgis RB, Khadr ME. Role of the hypoglycemic plant extract Cleome droserifolia in improving glucose and lipid metabolism and its relation to insulin resistance in fatty liver. Boll Chim Farm 1996;135:507–17. 11. Abdel-Hady NM. Pharmacognostical investigation and biological verification of some recipes and preparations of natural origin for the treatment of diabetes [MS thesis]. Faculty of Pharmacy (Girls), Al- Azhar University, Cairo, Egypt; 1998. 12. Abdel-Kawy MA, El-Deib S, El-Khyat Z, Mikhail YA. Chemical and biological studies of Cleome droserifolia (Forssk.) Del. Part-I. Egypt J Biomed Sci 2000;6:204–18. 13. Motaal AA, Ezzat SM, Haddad PS. Determination of bioactive markers in Cleome droserifolia using cell-based bioassays for antidiabetic activity and isolation of two novel active compounds. Phytomedicine 2011;19:38–41. 14. Wu G, Jiang S, Jiang F, Zhu D, Wut H, Jiang S. Steroidal glycosides from Tribulus terrestris. Phytochemistry 1996;42: 1677–81. 15. Marles RJ, Farnsworth NR. Antidiabetic plants and their active constituents. Phytomedicine 1995;2:137–89. 16. Li M, Qu W, Wang Y, Wan H, Tian C. Hypoglycemic effect of saponin from Tribulus terrestris. Zhong Yao Cai 2002;25:420–2. 17. Wagner H, Baldt S, Zgainski EM. Drogen analyse. Berlin, New York: Springer-Verlag; 1983. 18. Buck WB, Osweiter GD, Van Glder A. Clinical diagnostic veterinary toxicology. 2nd ed. Iowa: Kendall/hunt Publishing Company; 1976 [52011]. 19. Brosky G, Logothelopoulos J. Streptozotocin diabetes in the mouse and guinea pig. Diabetes 1969;18:606–9. 20. Trinder P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 1969;6:24–7. 21. Kirana H, Srinivasan B. Trichosanthes cucumerina Linn. improves glucose tolerance and tissue glycogen in non-insulin dependent diabetes mellitus induced rats. Indian J Pharmacol 2008;2008(40): 103–6. 22. Cheng D. Prevalence, predisposition and prevention of type 2 diabetes. Nutr Metab 2005;2:2–29. 23. Szkudelski T. The mechanism of alloxan and streptozotocin action in b-cells of the rat pancreas. Physiol Res 2001;50:536–46. 24. Li M, Qu W, Chu S, Wang H, Tian C, Tu M. Effect of the decoction of Tribulus terrestris on mice gluconeogenesis. Zhong Yao Cai 2001;24:586–8. 25. Cameron-Smith D, Habito R, Barnett M, Collier GR. Dietary guar gum improves insulin sensitivity in streptozotocin-induced diabetic rats. J Nutr 1997;127:359–64. 26. Anderson RA, Striffler J. Development of a streptozotocininduced diabetic rat model for studies on the effects of cinnamon on glucose tolerance and insulin secretion. FASEB 2008;22: 1113–6. 27. Goldberg RB. Lipid disorders in diabetes. Diabetes Care 1981;4:561–72. 28. Omoruyi FO, Grindley PB, Asemota HN, Morrison EYSA. Increased plasma and liver lipid in STZ-induced diabetic rats: effect of Yam (Dioscorea cayenensis) or Dasheen (Colocasia esculenta) extract supplements. Diabetol Croat 2001;30:87–92. 29. Wilson PWF. High density lipoprotein, low density lipoprotein and coronary heart disease. Am J Cardiol 1990;66:7A–10A. | en_US |
dc.identifier.doi | https://doi.org/10.1016/j.bfopcu.2013.12.002 | |
dc.identifier.issn | 1110-0931 | |
dc.identifier.other | https://doi.org/10.1016/j.bfopcu.2013.12.002 | |
dc.identifier.uri | https://cutt.ly/PtwEzFr | |
dc.language.iso | en | en_US |
dc.publisher | Faculty of Pharmacy, Cairo University | en_US |
dc.relation.ispartofseries | Bulletin of Faculty of Pharmacy, Cairo University; | |
dc.subject | University of Antidiabetic | en_US |
dc.subject | Hypolipidemic | en_US |
dc.title | Antihyperglycemic and antihyperlipidemic effects of the methanol extracts of Cleome ramosissima Parl., Barleria bispinosa (Forssk.) Vahl. and Tribulus macropterus Boiss. | en_US |
dc.type | Article | en_US |