Characterization of direct selective laser sintering of alumina
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Fayed E.M. | |
dc.contributor.author | Elmesalamy A.S. | |
dc.contributor.author | Sobih M. | |
dc.contributor.author | Elshaer Y. | |
dc.contributor.other | Mechanical Design and Production Department | |
dc.contributor.other | Military Technical College | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Mechatronics Systems Engineering Department | |
dc.contributor.other | October University for Modern Sciences and Arts (MSA) | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:40:59Z | |
dc.date.available | 2020-01-09T20:40:59Z | |
dc.date.issued | 2018 | |
dc.description | Scopus | |
dc.description.abstract | The last three decades have seen a growing trend towards high-temperature ceramic parts processed with selective laser sintering technology, due to recent development of laser processing facilities. The aim of the present research is to understand the effect of the laser sintering parameters (power and laser scanning speed) on the quality of the sintered layer characteristics (layer surface roughness, layer thickness, layer deformation, and vector/line width). Moreover, the influence of the laser sintering parameters on layer physical properties and microstructure are investigated. Based on the obtained results, the physical properties for fabricating sintering layer can be improved. The results show that maximum density of the sintered ceramic layers are of 3.54�g/cm3 and minimum porosity of 4.34%. The hardness of the higher physical properties was measured with Vickers micro hardness and was found to be 1682�Hv with standard deviation 113. � 2017, Springer-Verlag London Ltd. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=20428&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1007/s00170-017-0981-y | |
dc.identifier.doi | PubMed ID : | |
dc.identifier.issn | 2683768 | |
dc.identifier.other | https://doi.org/10.1007/s00170-017-0981-y | |
dc.identifier.other | PubMed ID : | |
dc.identifier.uri | https://t.ly/GJzg9 | |
dc.language.iso | English | en_US |
dc.publisher | Springer London | en_US |
dc.relation.ispartofseries | International Journal of Advanced Manufacturing Technology | |
dc.relation.ispartofseries | 94 | |
dc.subject | Ceramic laser sintering | en_US |
dc.subject | Laser processing | en_US |
dc.subject | Selective laser sintering | en_US |
dc.subject | 3D printers | en_US |
dc.subject | Alumina | en_US |
dc.subject | Ceramic materials | en_US |
dc.subject | Hardness | en_US |
dc.subject | Laser heating | en_US |
dc.subject | Microhardness | en_US |
dc.subject | Physical properties | en_US |
dc.subject | Sintered alumina | en_US |
dc.subject | Surface roughness | en_US |
dc.subject | Ceramic laser sintering | en_US |
dc.subject | High temperature ceramics | en_US |
dc.subject | Laser process | en_US |
dc.subject | Laser scanning speed | en_US |
dc.subject | Properties and microstructures | en_US |
dc.subject | Selective laser sintering | en_US |
dc.subject | Standard deviation | en_US |
dc.subject | Vickers microhardness | en_US |
dc.subject | Sintering | en_US |
dc.title | Characterization of direct selective laser sintering of alumina | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Shahzad, K., Deckers, J., Kruth, J.-P., Vleugels, J., Additive manufacturing of alumina parts by indirect selective laser sintering and post processing (2013) J Mater Process Technol, 213, pp. 1484-1494; Wang, W., Ma, S., Fuh, J., Lu, L., Liu, Y., Processing and characterization of laser-sintered Al2O3/ZrO2/SiO2 (2013) Int J Adv Manuf Technol, 68, pp. 2565-2569; Shackelford, J.F., Doremus, R.H., (2008) Ceramic and glass materials, , Springer, New York; Elshaer, Y., (2003) Fracture of ceramic/metal laminates, , Ph.D. dissertation, Manchester Institute of Science and Technology; Klocke, F., Ader, C., (2003) Direct laser sintering of ceramics, pp. 447-455. , State of the Art Report, Fraunhofer Institute of Production Technology IPT, Aachen, Germany; Shishkovsky, I., Yadroitsev, I., Bertrand, P., Smurov, I., Alumina�zirconium ceramics synthesis by selective laser sintering/melting (2007) Appl Surf Sci, 254, pp. 966-970; Yen, H.-C., Chiu, M.-L., Tang, H.-H., Laser scanning parameters on fabrication of ceramic parts by liquid phase sintering (2009) J Eur Ceram Soc, 29, pp. 1331-1336; Tian, X., (2010) Rapid prototyping of ceramics by direct laser sintering, , Papierflieger-Verlag; Liu, Z., Nolte, J.J., Packard, J., Hilmas, G., Dogan, F., Leu, M.-C., (2007) Selective laser sintering of high-density alumina ceramic parts. In: Proceedings of the 35th international MATADOR conference, pp 351�354; Reinecke, A.-M., Regenfu�, P., Nieher, M., Kl�tzer, S., Ebert, R., Exner, H., (2007) Laser beam sintering of coatings and structures, , Laserinstitut Mittelsachsen e.V. an der Hochschule Mittweida, Germany; Fayed, E., Elmesalamy, A., Sobih, M., Elshaer, Y., Multi-objective optimization for alumina laser sintering process (2016) Lasers Manuf Mater Process, 3, pp. 174-190; Elmesalamy, A.S.E., (2013) Narrow gap laser welding of 316L stainless steel for potential application in the manufacture of thick section nuclear components, , Ph.D. dissertation, The University of Manchester, Faculty of Engineering and Physical Sciences; Elmesalamy, A., Li, L., Francis, J., Sezer, H., Understanding the process parameter interactions in multiple-pass ultra-narrow-gap laser welding of thick-section stainless steels (2013) Int J Adv Manuf Technol, 68, pp. 1-17; Klocke, F., Ader, C., (2003) Direct laser sintering of ceramics, pp. 447-455. , In, Solid freeform fabrication symposium; Figiel, P., Rozmus, M., Smuk, B., Properties of alumina ceramics obtained by conventional and non-conventional methods for sintering ceramics (2011) J Achiev Mater Manuf Eng, 48, pp. 29-34 | |
dcterms.source | Scopus |