Phytochemical profiles and antimicrobial activities of Allium cepa red cv. and A. sativum subjected to different drying methods: A comparative MS-based metabolomics
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Farag M.A. | |
dc.contributor.author | Ali S.E. | |
dc.contributor.author | Hodaya R.H. | |
dc.contributor.author | El-Seedi H.R. | |
dc.contributor.author | Sultani H.N. | |
dc.contributor.author | Laub A. | |
dc.contributor.author | Eissa T.F. | |
dc.contributor.author | Abou-Zaid F.O.F. | |
dc.contributor.author | Wessjohann L.A. | |
dc.contributor.other | Pharmacognosy Department | |
dc.contributor.other | College of Pharmacy | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Kasr el Aini St. | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Department of Pharmaceutical Biology | |
dc.contributor.other | Faculty of Pharmacy and Biotechnology | |
dc.contributor.other | German University in Cairo | |
dc.contributor.other | P.B. 11835 | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Plant Production Department | |
dc.contributor.other | Desert Research Center | |
dc.contributor.other | P.B. 11714 | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Division of Pharmacognosy | |
dc.contributor.other | Department of Medicinal Chemistry | |
dc.contributor.other | Uppsala University | |
dc.contributor.other | Box 574 | |
dc.contributor.other | Uppsala | |
dc.contributor.other | SE-75 123 | |
dc.contributor.other | Sweden; Department of Chemistry | |
dc.contributor.other | Faculty of Science | |
dc.contributor.other | El-Menoufia University | |
dc.contributor.other | Shebin El-Kom | |
dc.contributor.other | 32512 | |
dc.contributor.other | Egypt; Leibniz Institute of Plant Biochemistry | |
dc.contributor.other | Dept. Bioorganic Chemistry | |
dc.contributor.other | Weinberg 3 | |
dc.contributor.other | Halle (Saale) | |
dc.contributor.other | D-06120 | |
dc.contributor.other | Germany; Pharmacognosy Department | |
dc.contributor.other | College of Pharmacy | |
dc.contributor.other | Modern Science and Arts University | |
dc.contributor.other | P.B. 12566 | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:41:21Z | |
dc.date.available | 2020-01-09T20:41:21Z | |
dc.date.issued | 2017 | |
dc.description | Scopus | |
dc.description.abstract | Plants of the Allium genus produce sulphur compounds that give them a characteristic (alliaceous) flavour and mediate for their medicinal use. In this study, the chemical composition and antimicrobial properties of Allium cepa red cv. and A. sativum in the context of three different drying processes were assessed using metabolomics. Bulbs were dried using either microwave, air drying, or freeze drying and further subjected to chemical analysis of their composition of volatile and non-volatile metabolites. Volatiles were collected using solid phase micro-extraction (SPME) coupled to gas chromatography-mass spectrometry (GC/MS) with 42 identified volatiles including 30 sulphur compounds, four nitriles, three aromatics, and three esters. Profiling of the polar non-volatile metabolites via ultra-performance liquid chromatography coupled to high resolution MS (UPLC/MS) annotated 51 metabolites including dipeptides, flavonoids, phenolic acids, and fatty acids. Major peaks in GC/MS or UPLC/MS contributing to the discrimination between A. sativum and A. cepa red cv. were assigned to sulphur compounds and flavonoids. Whereas sulphur conjugates amounted to the major forms in A. sativum, flavonoids predominated in the chemical composition of A. cepa red cv. With regard to drying impact on Allium metabolites, notable and clear separations among specimens were revealed using principal component analysis (PCA). The PCA scores plot of the UPLC/MS dataset showed closer metabolite composition of microwave dried specimens to freeze dried ones, and distant from air dried bulbs, observed in both A. cepa and A. sativum. Compared to GC/MS, the UPLC/MS derived PCA model was more consistent and better in assessing the impact of drying on Allium metabolism. A phthalate derivative was found exclusively in a commercial garlic preparation via GC/MS, of yet unknown origin. The freeze dried samples of both Allium species exhibited stronger antimicrobial activities compared to dried specimens with A. sativum being in general more active than A. cepa red cv. � 2017 by the authors. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=26370&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.3390/molecules22050761 | |
dc.identifier.doi | PubMed ID 28481316 | |
dc.identifier.issn | 14203049 | |
dc.identifier.other | https://doi.org/10.3390/molecules22050761 | |
dc.identifier.other | PubMed ID 28481316 | |
dc.identifier.uri | https://t.ly/ge8Wj | |
dc.language.iso | English | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
dc.publisher | MDPI AG | en_US |
dc.relation.ispartofseries | Molecules | |
dc.relation.ispartofseries | 22 | |
dc.subject | October University for Modern Sciences and Arts | |
dc.subject | University for Modern Sciences and Arts | |
dc.subject | MSA University | |
dc.subject | جامعة أكتوبر للعلوم الحديثة والآداب | |
dc.subject | Anti-microbial | en_US |
dc.subject | Drying | en_US |
dc.subject | Flavonoids | en_US |
dc.subject | Garlic | en_US |
dc.subject | Metabolomics | en_US |
dc.subject | Onion | en_US |
dc.subject | Organosulphur | en_US |
dc.subject | antiinfective agent | en_US |
dc.subject | flavonoid | en_US |
dc.subject | sulfur derivative | en_US |
dc.subject | chemistry | en_US |
dc.subject | comparative study | en_US |
dc.subject | garlic | en_US |
dc.subject | mass spectrometry | en_US |
dc.subject | metabolism | en_US |
dc.subject | metabolomics | en_US |
dc.subject | onion | en_US |
dc.subject | procedures | en_US |
dc.subject | Anti-Infective Agents | en_US |
dc.subject | Flavonoids | en_US |
dc.subject | Garlic | en_US |
dc.subject | Mass Spectrometry | en_US |
dc.subject | Metabolomics | en_US |
dc.subject | Onions | en_US |
dc.subject | Sulfur Compounds | en_US |
dc.title | Phytochemical profiles and antimicrobial activities of Allium cepa red cv. and A. sativum subjected to different drying methods: A comparative MS-based metabolomics | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Martins, N., Petropoulos, S., Ferreira, I.C., Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review (2016) Food Chem., 211, pp. 41-50. , [CrossRef] [PubMed]; Lanzotti, V., The analysis of onion and garlic (2006) J. Chromatogr. A, 1112, pp. 3-22. , [CrossRef] [PubMed]; Yang, B., Yang, H., Chen, F., Hua, Y., Jiang, Y., Phytochemical analyses of ziziphus jujuba mill. Var. Spinosa seed by ultrahigh performance liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry (2013) Analyst, 138, pp. 6881-6888. , [CrossRef] [PubMed]; Marsili, R., (2001) Flavor, Fragrance, and Odor Analysis, 115. , CRC Press: Boca Raton, FL, USA; Ross, Z.M., O'Gara, E.A., Hill, D.J., Sleightholme, H.V., Maslin, D.J., Antimicrobial properties of garlic oil against human enteric bacteria: Evaluation of methodologies and comparisons with garlic oil sulfidesulfides and garlic powder (2001) Appl. Environ. Microbiol., 67, pp. 475-480. , [CrossRef] [PubMed]; Ali, S.E., Farag, M.A., Holvoet, P., Hanafi, R.S., Gad, M.Z., A comparative metabolomics approach reveals early biomarkers for metabolic response to acute myocardial infarction (2016) Sci. Rep., 6, p. 36359. , [CrossRef] [PubMed]; Saeidnia, S., Abdollahi, M., Are medicinal plants polluted with phthalates? (2013) Daru J. Fac. Pharm. Tehran Univ. Med. Sci., 21, p. 43. , [CrossRef] [PubMed]; Farag, M.A., Porzel, A., Al-Hammady, M.A., Hegazy, M.E., Meyer, A., Mohamed, T.A., Westphal, H., Wessjohann, L.A., Soft corals biodiversity in the egyptian red sea: A comparative MS and NMR metabolomics approach of wild and aquarium grown species (2016) J. Proteome Res., 15, pp. 1274-1287. , [CrossRef] [PubMed]; Lokke, M.M., Edelenbos, M., Larsen, E., Feilberg, A., Investigation of volatiles emitted from freshly cut onions (Allium cepa L.) by real time proton-transfer reaction-mass spectrometry (PTR-MS) (2012) Sensors (Basel), 12, pp. 16060-16076. , [CrossRef] [PubMed]; Farag, M.A., El-Ahmady, S.H., Elian, F.S., Wessjohann, L.A., Metabolomics driven analysis of artichoke leaf and its commercial products via UHPLC-q-TOF-MS and chemometrics (2013) Phytochemistry, 95, pp. 177-187. , [CrossRef] [PubMed]; Kim, S., Park, S.L., Lee, S., Lee, S.Y., Ko, S., Yoo, M., UPLC/ESI-MS/MS analysis of compositional changes for organosulphur compounds in garlic (Allium sativum L.) during fermentation (2016) Food Chem., 211, pp. 555-559. , [CrossRef] [PubMed]; Kim, S., Kim, D.B., Jin, W., Park, J., Yoon, W., Lee, Y., Kim, S., Lee, O.H., Comparative studies of bioactive organosulphur compounds and antioxidant activities in garlic (Allium sativum L.), elephant garlic (Allium ampeloprasum L.) and onion (Allium cepa L.) (2017) Nat. Prod. Res., 31, pp. 1-5. , [CrossRef] [PubMed]; Lonsdale, D., Thiamine tetrahydrofurfuryl disulfides: A little known therapeutic agent (2004) Med. Sci. Monitor, 10, pp. RA199-RA203; Saeed, N., Khan, M.R., Shabbir, M., Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts torilis leptophylla L (2012) BMC Complement. Altern. Med., 12, p. 221. , [CrossRef] [PubMed]; Lanzotti, V., Scala, F., Bonanomi, G., Compounds from allium species with cytotoxic and antimicrobial activity (2014) Phytochem. Rev., 13, pp. 769-791. , [CrossRef]; Farag, M.A., Eldin, M.G.S., Kassem, H., Abou El-Fetouh, M., Metabolome classification of brassica napus L. Organs via UPLC-QTOF-PDA-MS and their anti-oxidant potential (2013) Phytochem. Anal., 24, pp. 277-287. , [CrossRef] [PubMed]; Martin-Arjol, I., Bassas-Galia, M., Bermudo, E., Garcia, F., Manresa, A., Identification of oxylipins with antifungal activity by LC-MS/MS from the supernatant of pseudomonas 42A2 (2010) Chem. Phys. Lipids, 163, pp. 341-346. , [CrossRef] [PubMed]; Dehpour, A.A., Babakhani, B., Khazaei, S., Asadi, M., Chemical composition of essential oil and antibacterial activity of extracts from flower of allium atroviolaceum (2011) J. Med. Plants Res., 5, pp. 3667-3672; Fenwick, G.R., Hanley, A.B., The genus allium-part 1 (1985) Crit. Rev. Food Sci. Nutr., 22, pp. 199-271. , [CrossRef] [PubMed]; Farag, M.A., Gad, H.A., Heiss, A.G., Wessjohann, L.A., Metabolomics driven analysis of six nigella species seeds via UPLC-qTOF-MS and GC-MS coupled to chemometrics (2014) Food Chem., 151, pp. 333-342. , [CrossRef] [PubMed]; Corzo-Mart�nez, M., Corzo, N., Villamiel, M., Biological properties of onions and garlic (2007) Trends Food Sci. Technol., 18, pp. 609-625. , [CrossRef]; Rodriguez Galdon, B., Rodriguez Rodriguez, E.M., Diaz Romero, C., Flavonoids in onion cultivars (Alliumcepa L.) (2008) J. Food Sci., 73, pp. C599-C605. , [CrossRef] [PubMed]; Boyle, S.P., Dobson, V.L., Duthie, S.J., Kyle, J.A., Collins, A.R., Absorption and DNA protective effects of flavonoid glycosides from an onion meal (2000) Eur. J. Nutr., 39, pp. 213-223. , [CrossRef] [PubMed]; Jia, L.L., Lou, X.Y., Guo, Y., Leung, K.S., Zeng, E.Y., Occurrence of phthalate esters in over-The-counter medicines from China and its implications for human exposure (2017) Environ. Int., 98, pp. 137-142. , [CrossRef] [PubMed]; Cavagnaro, P.F., Galmarini, C.R., Effect of processing and cooking conditions on onion (Allium cepa L.) induced antiplatelet activity and thiosulphinate content (2012) J. Agric. Food Chem., 60, pp. 8731-8737. , [CrossRef] [PubMed]; Durenkamp, M., De Kok, L.J., Impact of pedospheric and atmospheric sulphur nutrition on sulphur metabolism of allium cepa L., a species with a potential sink capacity for secondary sulphur compounds (2004) J. Exp. Bot., 55, pp. 1821-1830. , [CrossRef] [PubMed]; Schmidt, J.S., Nyberg, N.T., Staerk, D., Assessment of constituents in allium by multivariate data analysis, high-resolution alpha-glucosidase inhibition assay and HPLC-SPE-NMR (2014) Food Chem., 161, pp. 192-198. , [CrossRef] [PubMed]; Liu, M., Chen, P., Vericel, E., Lelli, M., Beguin, L., Lagarde, M., Guichardant, M., Characterization and biological effects of di-hydroxylated compounds deriving from the lipoxygenation of ALA (2013) J. Lipid Res., 54, pp. 2083-2094. , [CrossRef] [PubMed]; Lemar, K.M., Turner, M.P., Lloyd, D., Garlic (Allium sativum) as an anti-candida agent: A comparison of the efficacy of fresh garlic and freeze-dried extracts (2002) J. Appl. Microbiol., 93, pp. 398-405. , [CrossRef] [PubMed]; Harris, J.C., Cottrell, S.L., Plummer, S., Lloyd, D., Antimicrobial properties of allium sativum (garlic) (2001) Appl. Microbiol. Biotechnol., 57, pp. 282-286. , [CrossRef] [PubMed]; Farag, M.A., Rasheed, D.M., Kamal, I.M., Volatiles and primary metabolites profiling in two hibiscus sabdariffa (roselle) cultivars via headspace SPME-GC-MS and chemometrics (2015) Food Res. Int., 78, pp. 327-335. , [CrossRef] [PubMed]; Broeckling, C.D., Reddy, I.R., Duran, A.L., Zhao, X., Sumner, L.W., MET-IDEA: Data extraction tool for mass spectrometry-based metabolomics (2006) Anal. Chem., 78, pp. 4334-4341. , [CrossRef] [PubMed]; Zajmi, A., Mohd Hashim, N., Noordin, M.I., Khalifa, S.A., Ramli, F., Mohd Ali, H., El-Seedi, H.R., Ultrastructural study on the antibacterial activity of artonin e versus streptomycin against staphylococcus aureus strains (2015) PLoS ONE, 10, p. e0128157. , [CrossRef] [PubMed] | |
dcterms.source | Scopus |