Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health
No Thumbnail Available
Date
5/14/2020
Journal Title
Journal ISSN
Volume Title
Type
Article
Publisher
American Chemical Society
Series Info
ACS Omega;2020, 5, 20, 11849–11872
Scientific Journal Rankings
Abstract
Quercetin (Que) and its derivatives are naturally occurring phytochemicals with promising bioactive effects. The antidiabetic, anti-inflammatory, antioxidant, antimicrobial, anti-Alzheimer's, antiarthritic, cardiovascular, and wound-healing effects of Que have been extensively investigated, as well as its anticancer activity against different cancer cell lines has been recently reported. Que and its derivatives are found predominantly in the Western diet, and people might benefit from their protective effect just by taking them via diets or as a food supplement. Bioavailability-related drug-delivery systems of Que have also been markedly exploited, and Que nanoparticles appear as a promising platform to enhance their bioavailability. The present review aims to provide a brief overview of the therapeutic effects, new insights, and upcoming perspectives of Que. © Copyright © 2020 American Chemical Society.
Description
Scopus
Keywords
Anatomy, Peptides and proteins, Carbohydrates, Rodent models, Oxidative stress
Citation
Spencer, J.P.E., Vauzour, D., Rendeiro, C. Flavonoids and cognition: The molecular mechanisms underlying their behavioural effects (2009) Archives of Biochemistry and Biophysics, 492 (1-2), pp. 1-9. Cited 136 times. doi: 10.1016/j.abb.2009.10.003 View at Publisher 2 Kasikci, M.B., Bagdatlioglu, N. Bioavailability of quercetin (Open Access) (2016) Current Research in Nutrition and Food Science, 4 (SpecialIssue2), pp. 146-151. Cited 22 times. http://www.foodandnutritionjournal.org/download/3164 doi: 10.12944/CRNFSJ.4.Special-Issue-October.20 View at Publisher 3 Anand David, A.V., Arulmoli, R., Parasuraman, S. Overviews of biological importance of quercetin: A bioactive flavonoid (2016) Pharmacognosy Reviews, 10 (20), pp. 84-89. Cited 187 times. http://www.phcogrev.com/ doi: 10.4103/0973-7847.194044 View at Publisher 4 Sytar, O., Kosyan, A., Taran, N., Smetanska, I. Anthocyanin’s as marker for selection of buckwheat plants with high rutin content (2014) Gesunde Pflanzen, 66 (4), pp. 165-169. Cited 11 times. http://www.springer.com/life+sci/plant+sciences/journal/10343 doi: 10.1007/s10343-014-0331-z View at Publisher 5 Miles, S.L., Mcfarland, M., Niles, R.M. Molecular and physiological actions of quercetin: Need for clinical trials to assess its benefits in human disease (2014) Nutrition Reviews, 72 (11), pp. 720-734. Cited 57 times. http://nutritionreviews.oxfordjournals.org/ doi: 10.1111/nure.12152 View at Publisher 6 Guo, Y., Bruno, R.S. Endogenous and exogenous mediators of quercetin bioavailability (2015) Journal of Nutritional Biochemistry, 26 (3), pp. 201-210. Cited 86 times. www.elsevier.com/locate/jnutbio doi: 10.1016/j.jnutbio.2014.10.008 View at Publisher 7 Russo, M., Spagnuolo, C., Tedesco, I., Bilotto, S., Russo, G.L. The flavonoid quercetin in disease prevention and therapy: Facts and fancies (2012) Biochemical Pharmacology, 83 (1), pp. 6-15. Cited 392 times. www.elsevier.com/locate/biochempharm doi: 10.1016/j.bcp.2011.08.010 View at Publisher 8 Sultana, B., Anwar, F. Flavonols (kaempeferol, quercetin, myricetin) contents of selected fruits, vegetables and medicinal plants (2008) Food Chemistry, 108 (3), pp. 879-884. Cited 211 times. doi: 10.1016/j.foodchem.2007.11.053 View at Publisher 9 Pérez-Jiménez, J., Neveu, V., Vos, F., Scalbert, A. Identification of the 100 richest dietary sources of polyphenols: An application of the Phenol-Explorer database (Open Access) (2010) European Journal of Clinical Nutrition, 64, pp. S112-S120. Cited 295 times. doi: 10.1038/ejcn.2010.221 View at Publisher 10 Dinelli, G., Bonetti, A., Minelli, M., Marotti, I., Catizone, P., Mazzanti, A. Content of flavonols in Italian bean (Phaseolus vulgaris L.) ecotypes (2006) Food Chemistry, 99 (1), pp. 105-114. Cited 77 times. doi: 10.1016/j.foodchem.2005.07.028 View at Publisher 11 Sytar, O., Bruckova, K., Hunkova, E., Zivcak, M., Konate, K., Brestic, M. The application of multiplex fluorimetric sensor for the analysis of flavonoids content in the medicinal herbs family Asteraceae, Lamiaceae, Rosaceae (Open Access) (2015) Biological Research, 48. Cited 21 times. http://www.scielo.cl/pdf/bres/v48/05.pdf doi: 10.1186/0717-6287-48-5 View at Publisher 12 Sokół-Łetowska, A., Oszmiański, J., Wojdyło, A. Antioxidant activity of the phenolic compounds of hawthorn, pine and skullcap (2007) Food Chemistry, 103 (3), pp. 853-859. Cited 69 times. doi: 10.1016/j.foodchem.2006.09.036 View at Publisher 13 Haenen, G.R.M.M., Paquay, J.B.G., Korthouwer, R.E.M., Bast, A. Peroxynitrite scavenging by flavonoids (1997) Biochemical and Biophysical Research Communications, 236 (3), pp. 591-593. Cited 264 times. http://www.sciencedirect.com/science/journal/0006291X doi: 10.1006/bbrc.1997.7016 View at Publisher 14 Dell'Albani, P., Di Marco, B., Grasso, S., Rocco, C., Foti, M.C. Quercetin derivatives as potent inducers of selective cytotoxicity in glioma cells (2017) European Journal of Pharmaceutical Sciences, 101, pp. 56-65. Cited 8 times. www.elsevier.com/locate/ejps doi: 10.1016/j.ejps.2017.01.036 View at Publisher 15 Mouradov, A., Spangenberg, G. Flavonoids: A metabolic network mediating plants adaptation to their real estate (Open Access) (2014) Frontiers in Plant Science, 5 (November), art. no. 620, pp. 1-16. Cited 106 times. http://journal.frontiersin.org/Journal/10.3389/fpls.2014.00616/pdf doi: 10.3389/fpls.2014.00620 View at Publisher 16 Jacobs, M., Rubery, P.H. Naturally occurring auxin transport regulators (1988) Science, 241 (4863), pp. 346-349. Cited 452 times. doi: 10.1126/science.241.4863.346 View at Publisher 17 Dajas, F. Life or death: Neuroprotective and anticancer effects of quercetin (2012) Journal of Ethnopharmacology, 143 (2), pp. 383-396. Cited 193 times. doi: 10.1016/j.jep.2012.07.005 View at Publisher 18 Chirumbolo, S. The role of quercetin, flavonols and flavones in modulating inflammatory cell function (2010) Inflammation and Allergy - Drug Targets, 9 (4), pp. 263-285. Cited 188 times. http://www.benthamdirect.org/pages/all_b_bypublication.php doi: 10.2174/187152810793358741 View at Publisher 19 Adewole, S.O., Caxton-Martins, E.A., Ojewole, J.A.O. Protective effect of quercetin on the morphology of pancreatic β-cells of streptozotocin-treated diabetic rats (Open Access) (2007) African Journal of Traditional, Complementary and Alternative Medicines, 4 (1), pp. 64-74. Cited 63 times. http://www.bioline.org.br/request?tc07010 doi: 10.4314/ajtcam.v4i1.31196 View at Publisher 20 Kim, J.-H., Kang, M.-J., Choi, H.-N., Jeong, S.-M., Lee, Y.-M., Kim, J.-I. Quercetin attenuates fasting and postprandial hyperglycemia in animal models of diabetes mellitus (Open Access) (2011) Nutrition Research and Practice, 5 (2), pp. 107-111. Cited 108 times. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3085798/pdf/nrp-5-107.pdf doi: 10.4162/nrp.2011.5.2.107 View at Publisher 21 Shi, G.-J., Li, Y., Cao, Q.-H., Wu, H.-X., Tang, X.-Y., Gao, X.-H., Yu, J.-Q., (...), Yang, Y. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature (Open Access) (2019) Biomedicine and Pharmacotherapy, 109, pp. 1085-1099. Cited 25 times. https://www.journals.elsevier.com/biomedicine-and-pharmacotherapy doi: 10.1016/j.biopha.2018.10.130 View at Publisher 22 Youl, E., Bardy, G., Magous, R., Cros, G., Sejalon, F., Virsolvy, A., Richard, S., (...), Oiry, C. Quercetin potentiates insulin secretion and protects INS-1 pancreatic -cells against oxidative damage via the ERK1/2 pathway (2010) British Journal of Pharmacology, 161 (4), pp. 799-814. Cited 136 times. doi: 10.1111/j.1476-5381.2010.00910.x View at Publisher 23 Yang, D.K., Kang, H.-S. Anti-diabetic effect of cotreatment with quercetin and resveratrol in streptozotocin-induced diabetic rats (2018) Biomolecules and Therapeutics, 26 (2), pp. 130-138. Cited 30 times. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5839491/pdf/bt-26-130.pdf doi: 10.4062/biomolther.2017.254 View at Publisher 24 Vessal, M., Hemmati, M., Vasei, M. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats (2003) Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, 135 (3), pp. 357-364. Cited 380 times. https://www.journals.elsevier.com/comparative-biochemistry-and-physiology-part-c-toxicology-and-pharmacology doi: 10.1016/S1532-0456(03)00140-6 View at Publisher 25 Alam, M.M., Meerza, D., Naseem, I. Protective effect of quercetin on hyperglycemia, oxidative stress and DNA damage in alloxan induced type 2 diabetic mice (2014) Life Sciences, 109 (1), pp. 8-14. Cited 69 times. www.elsevier.com/locate/lifescie doi: 10.1016/j.lfs.2014.06.005 View at Publisher 26 Mahesh, T., Menon, V.P. Quercetin Allievates Oxidative Stress in Streptozotocin-induced Diabetic Rats (2004) Phytotherapy Research, 18 (2), pp. 123-127. Cited 142 times. doi: 10.1002/ptr.1374 View at Publisher 27 Srinivasan, P., Vijayakumar, S., Kothandaraman, S., Palani, M. Anti-diabetic activity of quercetin extracted from Phyllanthus emblica L. fruit: In silico and in vivo approaches (Open Access) (2018) Journal of Pharmaceutical Analysis, 8 (2), pp. 109-118. Cited 18 times. http://www.journals.elsevier.com/journal-of-pharmaceutical-analysis doi: 10.1016/j.jpha.2017.10.005 View at Publisher 28 Sharma, G., Kumar, S., Sharma, M., Upadhyay, N., Kumar, S., Ahmed, Z., Mahindroo, N. Anti-diabetic, anti-oxidant and anti-adipogenic potential of quercetin rich ethyl acetate fraction of prunus persica (Open Access) (2018) Pharmacognosy Journal, 10 (3), pp. 463-469. Cited 4 times. http://www.phcogj.com/http://www.phcogj.com/archives doi: 10.5530/pj.2018.3.76 View at Publisher 29 Gaballah, H.H., Zakaria, S.S., Mwafy, S.E., Tahoon, N.M., Ebeid, A.M. Mechanistic insights into the effects of quercetin and/or GLP-1 analogue liraglutide on high-fat diet/streptozotocin-induced type 2 diabetes in rats (2017) Biomedicine and Pharmacotherapy, 92, pp. 331-339. Cited 22 times. www.elsevier.com/locate/biomedpharm doi: 10.1016/j.biopha.2017.05.086 View at Publisher 30 Jeong, S.-M., Kang, M.-J., Choi, H.-N., Kim, J.-H., Kim, J.-I. Quercetin ameliorates hyperglycemia and dyslipidemia and improves antioxidant status in type 2 diabetic db/db mice (Open Access) (2012) Nutrition Research and Practice, 6 (3), pp. 201-207. Cited 126 times. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3395784/pdf/nrp-6-201.pdf doi: 10.4162/nrp.2012.6.3.201 View at Publisher 31 Hamilton, K.E., Rekman, J.F., Gunnink, L.K., Busscher, B.M., Scott, J.L., Tidball, A.M., Stehouwer, N.R., (...), Louters, L.L. Quercetin inhibits glucose transport by binding to an exofacial site on GLUT1 (2018) Biochimie, 151, pp. 107-114. Cited 8 times. www.elsevier.com/locate/biochimie doi: 10.1016/j.biochi.2018.05.012 View at Publisher 32 Dai, X., Ding, Y., Zhang, Z., Cai, X., Bao, L., Li, Y. Quercetin but not quercitrin ameliorates tumor necrosis factor-alpha-induced insulin resistance in C2C12 skeletal muscle cells (Open Access) (2013) Biological and Pharmaceutical Bulletin, 36 (5), pp. 788-795. Cited 25 times. https://www.jstage.jst.go.jp/article/bpb/36/5/36_b12-00947/_pdf doi: 10.1248/bpb.b12-00947 View at Publisher 33 Henagan, T.M., Cefalu, W.T., Ribnicky, D.M., Noland, R.C., Dunville, K., Campbell, W.W., Stewart, L.K., (...), Morrison, C.D. In vivo effects of dietary quercetin and quercetin-rich red onion extract on skeletal muscle mitochondria, metabolism, and insulin sensitivity (Open Access) (2015) Genes and Nutrition, 10 (1). Cited 32 times. http://www.springerlink.com/content/1555-8932 doi: 10.1007/s12263-014-0451-1 View at Publisher 34 Dias, A.S., Porawski, M., Alonso, M., Marroni, N., Collado, P.S., González-Gallego, J. Quercetin decreases oxidative stress, NF-κB activation, and iNOS overexpression in liver of streptozotocin-induced diabetic rats (Open Access) (2005) Journal of Nutrition, 135 (10), pp. 2299-2304. Cited 237 times. http://jn.nutrition.org doi: 10.1093/jn/135.10.2299 View at Publisher 35 Sirovina, D., Oršolić, N., Končić, M.Z., Kovačević, G., Benković, V., Gregorović, G. Quercetin vs chrysin: Effect on liver histopathology in diabetic mice (2013) Human and Experimental Toxicology, 32 (10), pp. 1058-1066. Cited 32 times. doi: 10.1177/0960327112472993 View at Publisher 36 Khaki, A., Nouri, M., Fathiazad, F., Ahmadi-Ashtiani, H.R., Rastgar, H., Rezazadeh, Sh. Protective effects of Quercetin on spermatogenesis in streptozotocin- induced diabetic rat (2009) Journal of Medicinal Plants, 8 (SUPPL. 5), pp. 57-64. Cited 27 times. 37 Khaki, A.A., Khaki, A., Nouri, M., Ahmadi-Ashtiani, H.R., Rastegar, H., Rezazadeh, Sh., Fathiazad, F., (...), Ghanbari, M. Evaluation effects of Quercetin on liver apoptosis in streptozotocin- induced diabetic rat (2009) Journal of Medicinal Plants, 8 (SUPPL. 5), pp. 70-78. Cited 20 times. 38 Jahan, S., Iftikhar, N., Ullah, H., Rukh, G., Hussain, I. Alleviative effect of quercetin on rat testis against arsenic: A histological and biochemical study (Open Access) (2015) Systems Biology in Reproductive Medicine, 61 (2), pp. 89-95. Cited 28 times. doi: 10.3109/19396368.2014.998350 View at Publisher 39 Kanter, M., Aktas, C., Erboga, M. Protective effects of quercetin against apoptosis and oxidative stress in streptozotocin-induced diabetic rat testis (2012) Food and Chemical Toxicology, 50 (3-4), pp. 719-725. Cited 88 times. doi: 10.1016/j.fct.2011.11.051 View at Publisher 40 Nuckols, T.K., Keeler, E., Anderson, L.J., Green, J., Morton, S.C., Doyle, B.J., Shetty, K., (...), Shekelle, P. Economic evaluation of Quality improvement interventions designed to improve glycemic control in diabetes: A systematic review and Weighted regression analysis (2018) Diabetes Care, 41 (5), pp. 985-993. Cited 10 times. http://care.diabetesjournals.org/content/41/5/985.full-text.pdf doi: 10.2337/dc17-1495/-/DC1 View at Publisher 41 Sundstrom, J.M., Hernández, C., Weber, S.R., Zhao, Y., Dunklebarger, M., Tiberti, N., Laremore, T., (...), Simó, R. Proteomic analysis of early diabetic retinopathy reveals mediators of neurodegenerative brain diseases (Open Access) (2018) Investigative Ophthalmology and Visual Science, 59 (6), pp. 2264-2274. Cited 11 times. http://iovs.arvojournals.org/data/journals/iovs/937022/i1552-5783-59-6-2264.pdf doi: 10.1167/iovs.17-23678 View at Publisher 42 Li, X.-H., Xin, X., Wang, Y., Wu, J.-Z., Jin, Z.-D., Ma, L.-N., Nie, C.-J., (...), Jin, M.-W. Pentamethylquercetin protects against diabetes-related cognitive deficits in diabetic goto-kakizaki rats (2013) Journal of Alzheimer's Disease, 34 (3), pp. 755-767. Cited 34 times. www.iospress.nl/journal/journal-of-alzheimers-disease/ doi: 10.3233/JAD-122017 View at Publisher 43 Chen, B., He, T., Xing, Y., Cao, T. Effects of quercetin on the expression of MCP-1, MMP-9 and VEGF in rats with diabetic retinopathy (Open Access) (2017) Experimental and Therapeutic Medicine, 14 (6), pp. 6022-6026. Cited 11 times. http://www.spandidos-publications.com/etm/14/6/6022/download doi: 10.3892/etm.2017.5275 View at Publisher 44 Porcu, E.P., Cossu, M., Rassu, G., Giunchedi, P., Cerri, G., Pourová, J., Najmanová, I., (...), Gavini, E. Aqueous injection of quercetin: An approach for confirmation of its direct in vivo cardiovascular effects (2018) International Journal of Pharmaceutics, 541 (1-2), pp. 224-233. Cited 11 times. www.elsevier.com/locate/ijpharm doi: 10.1016/j.ijpharm.2018.02.036 View at Publisher 45 Häckl, L.P.N., Cuttle, G., Sanches Dovichi, S., Lima-Landman, M.T., Nicolau, M. Inhibition of angiotensin-converting enzyme by quercetin alters the vascular response to bradykinin and angiotensin I (2002) Pharmacology, 65 (4), pp. 182-186. Cited 55 times. doi: 10.1159/000064341 View at Publisher 46 Linz, W., Wiemer, G., Gohlke, P., Unger, T., Scholkens, B.A. Contribution of kinins to the cardiovascular actions of angiotensin- converting enzyme inhibitors (1995) Pharmacological Reviews, 47 (1), pp. 25-49. Cited 639 times. 47 Jalili, T., Takeishi, Y., Song, G., Ball, N.A., Howles, G., Walsh, R.A. PKC translocation without changes in Gα(q) and PLC-β protein abundance in cardiac hypertrophy and failure (1999) American Journal of Physiology - Heart and Circulatory Physiology, 277 (6 46-6), pp. H2298-H2304. Cited 73 times. 48 Collins, J.F., Pawloski-Dahm, C., Davis, M.G., Ball, N., Dorn II, G.W., Walsh, R.A. The role of the cytoskeleton in left ventricular pressure overload hypertrophy and failure (1996) Journal of Molecular and Cellular Cardiology, 28 (7), pp. 1435-1443. Cited 92 times. http://www.elsevier.com/locate/yjmcc doi: 10.1006/jmcc.1996.0134 View at Publisher 49 Sánchez, M., Galisteo, M., Vera, R., Villar, I.C., Zarzuelo, A., Tamargo, J., Pérez-Vizcaíno, F., (...), Duarte, J. Quercetin downregulates NADPH oxidase, increases eNOS activity and prevents endothelial dysfunction in spontaneously hypertensive rats (2006) Journal of Hypertension, 24 (1), pp. 75-84. Cited 221 times. http://journals.lww.com/jhypertension doi: 10.1097/01.hjh.0000198029.22472.d9 View at Publisher 50 Machha, A., Achike, F.I., Mustafa, A.M., Mustafa, M.R. Quercetin, a flavonoid antioxidant, modulates endothelium-derived nitric oxide bioavailability in diabetic rat aortas (2007) Nitric Oxide - Biology and Chemistry, 16 (4), pp. 442-447. Cited 77 times. doi: 10.1016/j.niox.2007.04.001 View at Publisher 51 Mezesova, L., Bartekova, M., Javorkova, V., Vlkovicova, J., Breier, A., Vrbjar, N. Effect of quercetin on kinetic properties of renal na,k-atpase in normotensive and hypertensive rats (2010) Journal of Physiology and Pharmacology, 61 (5), pp. 593-598. Cited 19 times. http://www.jpp.krakow.pl/journal/archive/10_10/pdf/593_10_10_article.pdf View at Publisher 52 Prince, P.S.M., Sathya, B. Pretreatment with quercetin ameliorates lipids, lipoproteins and marker enzymes of lipid metabolism in isoproterenol treated cardiotoxic male Wistar rats (2010) European Journal of Pharmacology, 635 (1-3), pp. 142-148. Cited 45 times. doi: 10.1016/j.ejphar.2010.02.019 View at Publisher 53 Rezabakhsh, A., Rahbarghazi, R., Malekinejad, H., Fathi, F., Montaseri, A., Garjani, A. Quercetin alleviates high glucose-induced damage on human umbilical vein endothelial cells by promoting autophagy (2019) Phytomedicine, 56, pp. 183-193. Cited 13 times. www.urbanfischer.de/journals/phytomed doi: 10.1016/j.phymed.2018.11.008 View at Publisher 54 He, Y., Cao, X., Guo, P., Li, X., Shang, H., Liu, J., Xie, M., (...), Liu, X. Quercetin induces autophagy via FOXO1-dependent pathways and autophagy suppression enhances quercetin-induced apoptosis in PASMCs in hypoxia (2017) Free Radical Biology and Medicine, 103, pp. 165-176. Cited 21 times. www.elsevier.com/locate/freeradbiomed doi: 10.1016/j.freeradbiomed.2016.12.016 View at Publisher 55 Li, Y., Chen, M., Wang, J., Guo, X., Xiao, L., Liu, P., Liu, L., (...), Yao, P. Quercetin ameliorates autophagy in alcohol liver disease associated with lysosome through mTOR-TFEB pathway (Open Access) (2019) Journal of Functional Foods, 52, pp. 177-185. Cited 3 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/717426/description#description doi: 10.1016/j.jff.2018.10.033 View at Publisher 56 Godoy, J.A., Lindsay, C.B., Quintanilla, R.A., Carvajal, F.J., Cerpa, W., Inestrosa, N.C. Quercetin Exerts Differential Neuroprotective Effects Against H2O2 and Aβ Aggregates in Hippocampal Neurons: the Role of Mitochondria (2017) Molecular Neurobiology, 54 (9), pp. 7116-7128. Cited 23 times. http://www.springer.com/biomed/neuroscience/journal/12035 doi: 10.1007/s12035-016-0203-x View at Publisher 57 Chen, L.-C., Chen, Y.-C., Su, C.-Y., Hong, C.-S., Ho, H.-O., Sheu, M.-T. Development and characterization of self-assembling lecithin-based mixed polymeric micelles containing quercetin in cancer treatment and an in vivo pharmacokinetic study (Open Access) (2016) International Journal of Nanomedicine, 11, pp. 1557-1566. Cited 18 times. https://www.dovepress.com/getfile.php?fileID=29889 doi: 10.2147/IJN.S103681 View at Publisher 58 Moreno, L.C.G.E.I., Puerta, E., Suárez-Santiago, J.E., Santos-Magalhães, N.S., Ramirez, M.J., Irache, J.M. Effect of the oral administration of nanoencapsulated quercetin on a mouse model of Alzheimer's disease (2017) International Journal of Pharmaceutics, 517 (1-2), pp. 50-57. Cited 37 times. www.elsevier.com/locate/ijpharm doi: 10.1016/j.ijpharm.2016.11.061 View at Publisher 59 Palle, S., Neerati, P. Quercetin nanoparticles attenuates scopolamine induced spatial memory deficits and pathological damages in rats (2017) Bull. Fac. Pharm., 55, pp. 101-106. Cited 11 times. 60 Sharma, D.R., Wani, W.Y., Sunkaria, A., Kandimalla, R.J., Sharma, R.K., Verma, D., Bal, A., (...), Gill, K.D. Quercetin attenuates neuronal death against aluminum-induced neurodegeneration in the rat hippocampus (2016) Neuroscience, 324, pp. 163-176. Cited 49 times. www.elsevier.com/locate/neuroscience doi: 10.1016/j.neuroscience.2016.02.055 View at Publisher 61 Sabogal-Guáqueta, A.M., Muñoz-Manco, J.I., Ramírez-Pineda, J.R., Lamprea-Rodriguez, M., Osorio, E., Cardona-Gómez, G.P. The flavonoid quercetin ameliorates Alzheimer's disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer's disease model mice (2015) Neuropharmacology, 93, pp. 134-145. Cited 145 times. www.elsevier.com/locate/neuropharm doi: 10.1016/j.neuropharm.2015.01.027 View at Publisher 62 Zhang, X., Hu, J., Zhong, L., Wang, N., Yang, L., Liu, C.-C., Li, H., (...), Zhuang, J. Quercetin stabilizes apolipoprotein e and reduces brain Aβ levels in amyloid model mice (2016) Neuropharmacology, 108, pp. 179-192. Cited 22 times. www.elsevier.com/locate/neuropharm doi: 10.1016/j.neuropharm.2016.04.032 View at Publisher 63 JUNG, S.H., Murphy, E.A., McClellan, J.L., Carmichael, M.D., Davis, J.M. The dietary flavonoid quercetin decreases neuroinflammation in a mouse model of Alzheimer's disease (2010) FASEB J., 24, pp. 604-617. Cited 5 times. 64 Dong, Y.-S., Wang, J.-L., Feng, D.-Y., Qin, H.-Z., Wen, H., Yin, Z.-M., Gao, G.-D., (...), Li, C. Protective effect of quercetin against oxidative stress and brain edema in an experimental rat model of subarachnoid hemorrhage (Open Access) (2014) International Journal of Medical Sciences, 11 (3), pp. 282-290. Cited 53 times. http://www.medsci.org/v11p0282.pdf doi: 10.7150/ijms.7634 View at Publisher 65 Ansari, M.A., Abdul, H.M., Joshi, G., Opii, W.O., Butterfield, D.A. Protective effect of quercetin in primary neurons against Aβ(1-42): relevance to Alzheimer's disease (2009) Journal of Nutritional Biochemistry, 20 (4), pp. 269-275. Cited 237 times. doi: 10.1016/j.jnutbio.2008.03.002 View at Publisher 66 Ho, J.H., Chang, Y.L. Protective effects of quercetin and vitamin C against oxidative stress-induced neurodegeneration (2004) Journal of Agricultural and Food Chemistry, 52 (25), pp. 7514-7517. Cited 148 times. doi: 10.1021/jf049243r View at Publisher 67 Braidy, N., Behzad, S., Habtemariam, S., Ahmed, T., Daglia, M., Nabavi, S.M., Sobarzo-Sanchez, E., (...), Nabavi, S.F. Neuroprotective effects of citrus fruit-derived flavonoids, nobiletin and tangeretin in Alzheimer’s and Parkinson’s disease (2017) CNS and Neurological Disorders - Drug Targets, 16 (4), pp. 387-397. Cited 30 times. http://www.benthamdirect.org/pages/all_b_bypublication.php doi: 10.2174/1871527316666170328113309 View at Publisher 68 Kant, V., Jangir, B.L., Nigam, A., Kumar, V., Sharma, S. Dose regulated cutaneous wound healing potential of quercetin in male rats (2017) Wound Medicine, 19, pp. 82-87. Cited 8 times. http://www.elsevier.com/journals/wound-medicine/2213-9095 doi: 10.1016/j.wndm.2017.10.004 View at Publisher 69 Borghi, S.M., Mizokami, S.S., Pinho-Ribeiro, F.A., Fattori, V., Crespigio, J., Clemente-Napimoga, J.T., Napimoga, M.H., (...), Verri, W.A. The flavonoid quercetin inhibits titanium dioxide (TiO 2 )-induced chronic arthritis in mice (2018) Journal of Nutritional Biochemistry, 53, pp. 81-95. Cited 21 times. www.elsevier.com/locate/jnutbio doi: 10.1016/j.jnutbio.2017.10.010 View at Publisher 70 Haleagrahara, N., Miranda-Hernandez, S., Alim, M.A., Hayes, L., Bird, G., Ketheesan, N. Therapeutic effect of quercetin in collagen-induced arthritis (2017) Biomedicine and Pharmacotherapy, 90, pp. 38-46. Cited 26 times. www.elsevier.com/locate/biomedpharm doi: 10.1016/j.biopha.2017.03.026 View at Publisher 71 Li, G., Shen, X., Wei, Y., Si, X., Deng, X., Wang, J. Quercetin reduces Streptococcus suis virulence by inhibiting suilysin activity and inflammation (2019) International Immunopharmacology, 69, pp. 71-78. Cited 7 times. www.elsevier.com/locate/intimp doi: 10.1016/j.intimp.2019.01.017 View at Publisher 72 Bustos, P.S., Deza-Ponzio, R., Páez, P.L., Albesa, I., Cabrera, J.L., Virgolini, M.B., Ortega, M.G. Protective effect of quercetin in gentamicin-induced oxidative stress in vitro and in vivo in blood cells. Effect on gentamicin antimicrobial activity (2016) Environmental Toxicology and Pharmacology, 48, pp. 253-264. Cited 14 times. www.elsevier.com/locate/etap doi: 10.1016/j.etap.2016.11.004 View at Publisher 73 Zeng, H., Guo, X., Zhou, F., Xiao, L., Liu, J., Jiang, C., Xing, M., (...), Yao, P. Quercetin alleviates ethanol-induced liver steatosis associated with improvement of lipophagy (2019) Food and Chemical Toxicology, 125, pp. 21-28. Cited 5 times. www.elsevier.com/locate/foodchemtox doi: 10.1016/j.fct.2018.12.028 View at Publisher 74 Akinmoladun, A.C., Oladejo, C.O., Josiah, S.S., Famusiwa, C.D., Ojo, O.B., Olaleye, M.T. Catechin, quercetin and taxifolin improve redox and biochemical imbalances in rotenone-induced hepatocellular dysfunction: Relevance for therapy in pesticide-induced liver toxicity? (2018) Pathophysiology, 25 (4), pp. 365-371. Cited 10 times. www.elsevier.com/locate/pathophys doi: 10.1016/j.pathophys.2018.07.002 View at Publisher 75 Adeoye, A.O., Ojowu, J., Daniel, O.O., Olorunsogo, O.O. Inhibition of liver mitochondrial membrane permeability transition pore opening by quercetin and vitamin E in streptozotocin-induced diabetic rats (2018) Biochemical and Biophysical Research Communications, 504 (2), pp. 460-469. Cited 5 times. http://www.sciencedirect.com/science/journal/0006291X doi: 10.1016/j.bbrc.2018.08.114 View at Publisher 76 Lee, K.S., Park, S.N. Cytoprotective effects and mechanisms of quercetin, quercitrin and avicularin isolated from Lespedeza cuneata G. Don against ROS-induced cellular damage (2019) Journal of Industrial and Engineering Chemistry, 71, pp. 160-166. Cited 3 times. http:www.sciencedirect.com/science/journal/1226086X doi: 10.1016/j.jiec.2018.11.018 View at Publisher 77 Nile, S.H., Nile, A.S., Keum, Y.S., Sharma, K. Utilization of quercetin and quercetin glycosides from onion (Allium cepa L.) solid waste as an antioxidant, urease and xanthine oxidase inhibitors (2017) Food Chemistry, 235, pp. 119-126. Cited 39 times. www.elsevier.com/locate/foodchem doi: 10.1016/j.foodchem.2017.05.043 View at Publisher 78 Rastogi, S., Haldar, C. Comparative effect of melatonin and quercetin in counteracting LPS induced oxidative stress in bone marrow mononuclear cells and spleen of Funambulus pennanti (2018) Food and Chemical Toxicology, 120, pp. 243-252. Cited 5 times. www.elsevier.com/locate/foodchemtox doi: 10.1016/j.fct.2018.06.062 View at Publisher 79 Lesjak, M., Beara, I., Simin, N., Pintać, D., Majkić, T., Bekvalac, K., Orčić, D., (...), Mimica-Dukić, N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives (2018) Journal of Functional Foods, 40, pp. 68-75. Cited 113 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/717426/description#description doi: 10.1016/j.jff.2017.10.047 View at Publisher 80 Luangaram, S., Kukongviriyapan, U., Pakdeechote, P., Kukongviriyapan, V., Pannangpetch, P. Protective effects of quercetin against phenylhydrazine-induced vascular dysfunction and oxidative stress in rats (2007) Food and Chemical Toxicology, 45 (3), pp. 448-455. Cited 63 times. doi: 10.1016/j.fct.2006.09.008