New pyrazole derivatives: Synthesis, anti-inflammatory activity, cycloxygenase inhibition assay and evaluation of mPGES
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Hassan G.S. | |
dc.contributor.author | Abdel Rahman D.E. | |
dc.contributor.author | Abdelmajeed E.A. | |
dc.contributor.author | Refaey R.H. | |
dc.contributor.author | Alaraby Salem M. | |
dc.contributor.author | Nissan Y.M. | |
dc.contributor.other | Pharmaceutical Chemistry Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Kasr Elini St. | |
dc.contributor.other | Cairo | |
dc.contributor.other | 11562 | |
dc.contributor.other | Egypt; Pharmaceutical Chemistry Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Badr University in Cairo | |
dc.contributor.other | Badr City | |
dc.contributor.other | Cairo | |
dc.contributor.other | 11829 | |
dc.contributor.other | Egypt; National Cancer Institute | |
dc.contributor.other | Cairo University | |
dc.contributor.other | FomElkhalig | |
dc.contributor.other | Kasr Elaini St. | |
dc.contributor.other | Cairo | |
dc.contributor.other | 11796 | |
dc.contributor.other | Egypt; Pharmaceutical Chemistry Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | October University for Modern Sciences and Arts (MSA) | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:40:37Z | |
dc.date.available | 2020-01-09T20:40:37Z | |
dc.date.issued | 2019 | |
dc.description | Scopus | |
dc.description.abstract | New pyrazole derivatives 2�5 were synthesized and evaluated for their COX-1 and COX-2 inhibitory activity in vitro. All compounds showed good inhibitory activity at a nanomolar level and most compounds exhibited selectivity towards COX-2 inhibition. Compounds 2a, 3b, 4a, 5b and 5e exhibited IC50 towards COX-2 enzyme of 19.87, 39.43, 61.24, 38.73 and 39.14 nM, respectively. Furthermore, compounds 3b, 4a, 5b and 5e exhibited a selectivity index of 22.21, 14.35, 17.47 and 13.10, respectively. The most active compounds were further subjected to in vivo anti-inflammatory assay. The tested compounds showed better or comparable activity to celecoxib as positive control. In order to explore their binding mode and selectivity behaviour, molecular docking in the active site of COX-2 was carried out for these derivatives. Analysis of the docked poses of the compounds showed that they adopt similar conformations to the highly selective COX-2 inhibitor, SC-558. The docking pose of compound 3b was confirmed by molecular dynamics. All the tested compounds exhibited potent inhibitory effect on the production of PGE2, in addition to their inhibition of COX-2 enzyme. � 2019 Elsevier Masson SAS | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=17464&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1016/j.ejmech.2019.03.052 | |
dc.identifier.doi | PubMed ID 30928706 | |
dc.identifier.issn | 2235234 | |
dc.identifier.other | https://doi.org/10.1016/j.ejmech.2019.03.052 | |
dc.identifier.other | PubMed ID 30928706 | |
dc.identifier.uri | https://t.ly/JKlwY | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier Masson SAS | en_US |
dc.relation.ispartofseries | European Journal of Medicinal Chemistry | |
dc.relation.ispartofseries | 171 | |
dc.subject | Benzenesulfonamide | en_US |
dc.subject | mPGES | en_US |
dc.subject | Pyrazole | en_US |
dc.subject | Selective COX-2 | en_US |
dc.subject | 2 chloro n [4 cyano 1 (4 sulfamoylphenyl) 1h pyrazol 5 yl]acetamide | en_US |
dc.subject | 3 chloro n [4 cyano 1 (4 sulfamoylphenyl) 1h pyrazol 5 yl]acetamide | en_US |
dc.subject | 4 [4 cyano 5 (3,5 dimethoxybenzylidene)amino 1h pyrazol 1 yl]benzene sulfonamide | en_US |
dc.subject | 4 [4 cyano 5 (4 fluorobenzylidene)amino 1h pyrazol 1 yl]benzenesulfonamide | en_US |
dc.subject | 4 [4 cyano 5 (4 methoxybenzylidene)amino 1h pyrazol 1 yl]benzene sulfonamide | en_US |
dc.subject | 4 [5 (4 bromobenzylidene)amino cyano 1h pyrazol 1 yl]benzenesulfonamide | en_US |
dc.subject | 4 [5 (4 bromophenyl) 3 trifluoromethyl 1h pyrazol 1 yl]benzenesulfonamide | en_US |
dc.subject | 4 [5 (4 chlorobenzylidene)amino cyano 1h pyrazol 1 yl]benzenesulfonamide | en_US |
dc.subject | 4 [5 (benzylidene)amino 4 cyano 1h pyrazol 1 yl]benzenesulfonamide | en_US |
dc.subject | antiinflammatory agent | en_US |
dc.subject | celecoxib | en_US |
dc.subject | cyclooxygenase 1 | en_US |
dc.subject | cyclooxygenase 1 inhibitor | en_US |
dc.subject | cyclooxygenase 2 | en_US |
dc.subject | cyclooxygenase 2 inhibitor | en_US |
dc.subject | isoenzyme | en_US |
dc.subject | n [4 (5 acetamido 4 cyano 1h pyrazol 1 yl)phenyl]sulfonylacetamide | en_US |
dc.subject | n [4 cyano 1 (4 sulfamoylphenyl) 1h pyrazol 5 yl] 2 morpholinoacetamide | en_US |
dc.subject | n [4 cyano 1 (4 sulfamoylphenyl) 1h pyrazol 5 yl] 2 morpholinopropionamide | en_US |
dc.subject | n [4 cyano 1 (4 sulfamoylphenyl) 1h pyrazol 5 yl] 3 morpholinopropionamide | en_US |
dc.subject | n [4 cyano 1 (4 sulfamoylphenyl) 1h pyrazol 5 yl]benzamide | en_US |
dc.subject | prostaglandin E2 synthase | en_US |
dc.subject | pyrazole derivative | en_US |
dc.subject | sulfonamide | en_US |
dc.subject | unclassified drug | en_US |
dc.subject | cyclooxygenase 1 | en_US |
dc.subject | cyclooxygenase 2 | en_US |
dc.subject | nonsteroid antiinflammatory agent | en_US |
dc.subject | prostaglandin synthase | en_US |
dc.subject | prostaglandin synthase inhibitor | en_US |
dc.subject | pyrazole | en_US |
dc.subject | pyrazole derivative | en_US |
dc.subject | animal experiment | en_US |
dc.subject | animal model | en_US |
dc.subject | antiinflammatory activity | en_US |
dc.subject | Article | en_US |
dc.subject | carbon nuclear magnetic resonance | en_US |
dc.subject | carrageenan-induced paw edema | en_US |
dc.subject | controlled study | en_US |
dc.subject | cytosol | en_US |
dc.subject | drug synthesis | en_US |
dc.subject | enzyme immunoassay | en_US |
dc.subject | hydrogen bond | en_US |
dc.subject | IC50 | en_US |
dc.subject | male | en_US |
dc.subject | microsome | en_US |
dc.subject | molecular docking | en_US |
dc.subject | molecular dynamics | en_US |
dc.subject | nonhuman | en_US |
dc.subject | proton nuclear magnetic resonance | en_US |
dc.subject | rat | en_US |
dc.subject | selectivity index | en_US |
dc.subject | chemical structure | en_US |
dc.subject | chemistry | en_US |
dc.subject | dose response | en_US |
dc.subject | drug effect | en_US |
dc.subject | enzymology | en_US |
dc.subject | human | en_US |
dc.subject | metabolism | en_US |
dc.subject | structure activity relation | en_US |
dc.subject | synthesis | en_US |
dc.subject | Anti-Inflammatory Agents, Non-Steroidal | en_US |
dc.subject | Cyclooxygenase 1 | en_US |
dc.subject | Cyclooxygenase 2 | en_US |
dc.subject | Cyclooxygenase Inhibitors | en_US |
dc.subject | Dose-Response Relationship, Drug | en_US |
dc.subject | Humans | en_US |
dc.subject | Microsomes | en_US |
dc.subject | Molecular Docking Simulation | en_US |
dc.subject | Molecular Structure | en_US |
dc.subject | Prostaglandin-Endoperoxide Synthases | en_US |
dc.subject | Pyrazoles | en_US |
dc.subject | Structure-Activity Relationship | en_US |
dc.title | New pyrazole derivatives: Synthesis, anti-inflammatory activity, cycloxygenase inhibition assay and evaluation of mPGES | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Serhan, C.N., Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms (2017) FASEB J., 31, pp. 1273-1288; Poetker, D.M., Reh, D.D., A comprehensive review of the adverse effects of systemic corticosteroids (2010) Otolaryngol. Clin., 43, pp. 753-768; Day, R.O., Graham, G.G., Non-steroidal anti-inflammatory drugs (NSAIDs) (2013) BMJ, 346, p. f3195; Harirforoosh, S., Asghar, W., Jamali, F., Adverse effects of nonsteroidal antiinflammatory drugs: an update of gastrointestinal, cardiovascular and renal complications (2013) J. Pharm. Pharm. Sci., 16, pp. 821-847; Rao, P.P.N., Kabir, S.N., Mohamed, T., Nonsteroidal anti-inflammatory drugs (NSAIDs): progress in small molecule drug development (2010) Pharmaceuticals, 3, pp. 1530-1549; Rouzer, C.A., Marnett, L.J., Cyclooxygenases: structural and functional insights (2009) J. Lipid Res., 50, pp. S29-S34; Seibert, K., Masferrer, J.L., Role of inducible cyclooxygenase (COX-2) in inflammation (1994) Receptor, 4, pp. 17-23; Flower, R.J., The development of COX2 inhibitors (2003) Nat. Rev. Drug Discov., 2, pp. 179-191; Meyer-Kirchrath, J., Schr�r, K., Cyclooxygenase-2 inhibition and side-effects of non-steroidal anti-inflammatory drugs in the gastrointestinal tract (2000) Curr. Med. Chem., 7, pp. 1121-1129; Mart�nez-Gonz�lez, J., Badimon, L., Mechanisms underlying the cardiovascular effects of COX-inhibition: benefits and risks (2007) Curr. Pharmaceut. Des., 13, pp. 2215-2227; Park, J.Y., Pillinger, M.H., Abramson, S.B., Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases (2006) Clin. Immunol., 119, pp. 229-240; Nakanishi, M., Rosenberg, D.W., Multifaceted roles of PGE2 in inflammation and cancer (2013) Semin. Immunopathol., 35, pp. 123-137; Chen, Y., Liu, H., Xu, S., Wang, T., Li, W., Targeting microsomal prostaglandin E 2 synthase-1 (mPGES-1): the development of inhibitors as an alternative to non-steroidal anti-inflammatory drugs (NSAIDs) (2015) Medche123456789/309m, 6, pp. 2081-2123; Khurana, P., Jachak, S.M., Chemistry and biology of microsomal prostaglandin E 2 synthase-1 (mPGES-1) inhibitors as novel anti-inflammatory agents: recent developments and current status (2016) RSC Adv., 6, pp. 28343-28369; Faria, J.V., Vegi, P.F., Miguita, A.G.C., dos Santos, M.S., Boechat, N., Bernardino, A.M.R., Recently reported biological activities of pyrazole compounds (2017) Bioorg. Med. Chem., 25, pp. 5891-5903; Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y., Al-aizari, F., Ansar, M., Synthesis and pharmacological activities of pyrazole derivatives: a review (2018) Molecules, 23, p. 134; Mohammed, K.O., Nissan, Y.M., Synthesis, molecular docking, and biological evaluation of some novel hydrazones and pyrazole derivatives as anti-inflammatory agents (2014) Chem. Biol. Drug Des., 84, pp. 473-488; Abd-El Gawad, N.M., Hassan, G.S., Georgey, H.H., Design and synthesis of some pyrazole derivatives of expected anti-inflammatory and analgesic activities (2012) Med. Chem. Res., 21, pp. 983-994; Abdelgawad, M.A., Labib, M.B., Abdel-Latif, M., Pyrazole-hydrazone derivatives as anti-inflammatory agents: design, synthesis, biological evaluation, COX-1,2/5-LOX inhibition and docking study (2017) Bioorg. Chem., 74, pp. 212-220; Penning, T.D., Talley, J.J., Bertenshaw, S.R., Carter, J.S., Collins, P.W., Docter, S., Graneto, M.J., Isakson, P.C., Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)-3- (trifluoromethyl)-1 H -pyrazol-1-yl]benzenesulfonamide (SC-58635, celecoxib) (1997) J. Med. Chem., 40, pp. 1347-1365; Abdellatif, K.R.A., Fadaly, W.A.A., Elshaier, Y.A.M.M., Ali, W.A.M., Kamel, G.M., Non-acidic 1,3,4-trisubstituted-pyrazole derivatives as lonazolac analogs with promising COX-2 selectivity, anti-inflammatory activity and gastric safety profile (2018) Bioorg. Chem., 77, pp. 568-578; Ren, S.-Z., Wang, Z.-C., Zhu, X.-H., Zhu, D., Li, Z., Shen, F.-Q., Duan, Y.-T., Zhu, H.-L., Design and biological evaluation of novel hybrids of 1, 5-diarylpyrazole and Chrysin for selective COX-2 inhibition (2018) Bioorg. Med. Chem., 26, pp. 4264-4275; Ghareb, N., Elshihawy, H.A., Abdel-Daim, M.M., Helal, M.A., Novel pyrazoles and pyrazolo[1,2-a]pyridazines as selective COX-2 inhibitors; Ultrasound-assisted synthesis, biological evaluation, and DFT calculations (2017) Bioorg. Med. Chem. Lett, 27, pp. 2377-2383; Pavase, L.S., Mane, D.V., Baheti, K.G., Anti-inflammatory exploration of sulfonamide containing diaryl pyrazoles with promising COX-2 selectivity and enhanced gastric safety profile (2018) J. Heterocycl. Chem., 55, pp. 913-922; Abdel-Aziz, H.A., Al-Rashood, K.A., ElTahir, K.E.H., Suddek, G.M., Synthesis of N-benzenesulfonamide-1H-pyrazoles bearing arylsulfonyl moiety: novel celecoxib analogs as potent anti-inflammatory agents (2014) Eur. J. Med. Chem., 80, pp. 416-422; Ashour, H.M.A., El-Ashmawy, I.M., Bayad, A.E., Synthesis and pharmacological evaluation of new pyrazolyl benzenesulfonamides linked to polysubstituted pyrazoles and thiazolidinones as anti-inflammatory and analgesic agents (2016) Monatshefte F�r Chemie - Chem. Mon., 147, pp. 605-618; Sai Ram, K.V.V.M., Rambabu, G., Sarma, J.A.R.P., Desiraju, G.R., Ligand coordinate analysis of SC-558 from the active site to the surface of COX-2: a molecular dynamics study (2006) J. Chem. Inf. Model., 46, pp. 1784-1794; Mohy El-Din, M.M., Senbel, A.M., Bistawroos, A.A., El-Mallah, A., Nour El-Din, N.A., Bekhit, A.A., Abd El Razik, H.A., A novel COX-2 inhibitor pyrazole derivative proven effective as an anti-inflammatory and analgesic drug (2011) Basic Clin. Pharmacol. Toxicol., 108, pp. 263-273; Barsoum, F.F., Girgis, A.S., Facile synthesis of bis(4,5-dihydro-1H-pyrazole-1-carboxamides) and their thio-analogues of potential PGE2 inhibitory properties (2009) Eur. J. Med. Chem., 44, pp. 2172-2177; Ram, V.J., Pandey, H., Pyrazoles and pyrazolo[3,4-d]pyrimidines as biologically active agents, II (1979) Arch. Pharm. (Weinheim), 312, pp. 703-707; Hunsberger, I.M., Shaw, E.R., Fugger, J., Ketcham, R., Lednicer, D., The preparation of substituted hydrazines. IV. Arylhydrazines via conventional methods (1956) J. Org. Chem., 21, pp. 394-399; Widiarini, E., Organic Chemistry, fourth ed., Francis A. Carey, (n.d.); Xavier, A., Srividhya, N., Synthesis and Study of Schiff Base Ligands (2014); Silverstein, R., Webster, F., Kiemle, D., Bryce, D., Spectrometric Identification of Organic Compounds (2014); Murakami, M., Naraba, H., Tanioka, T., Semmyo, N., Nakatani, Y., Kojima, F., Ikeda, T., Kudo, I., Regulation of prostaglandin E2 biosynthesis by inducible membrane-associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2 (2000) J. Biol. Chem., 275, pp. 32783-32792; Murakami, M., Nakashima, K., Kamei, D., Masuda, S., Ishikawa, Y., Ishii, T., Ohmiya, Y., Kudo, I., Cellular prostaglandin E2 production by membrane-bound prostaglandin E synthase-2 via both cyclooxygenases-1 and-2 (2003) J. Biol. Chem., 278, pp. 37937-37947; Wobst, I., Schiffmann, S., Birod, K., Maier, T.J., Schmidt, R., Angioni, C., Geisslinger, G., Gr�sch, S., Dimethylcelecoxib inhibits prostaglandin E2 production (2008) Biochem. Pharmacol., 76, pp. 62-69; Koeberle, A., Werz, O., Inhibitors of the microsomal prostaglandin E2 synthase-1 as alternative to non steroidal anti-inflammatory drugs (NSAIDs)-a critical review (2009) Curr. Med. Chem., 16, pp. 4274-4296; Deckmann, K., R�rsch, F., Steri, R., Schubert-Zsilavecz, M., Geisslinger, G., Gr�sch, S., Dimethylcelecoxib inhibits mPGES-1 promoter activity by influencing EGR1 and NF-?B (2010) Biochem. Pharmacol., 80, pp. 1365-1372; Meade, E.A., Smith, W.L., DeWitt, D.L., Differential inhibition of prostaglandin endoperoxide synthase (cyclooxygenase) isozymes by aspirin and other non-steroidal anti-inflammatory drugs (1993) J. Biol. Chem., 268, pp. 6610-6614; Garavito, R.M., DeWitt, D.L., The cyclooxygenase isoforms: structural insights into the conversion of arachidonic acid to prostaglandins (1999) Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1441, pp. 278-287; Orlando, B.J., Malkowski, M.G., Substrate-selective inhibition of cyclooxygeanse-2 by fenamic acid derivatives is dependent on peroxide tone (2016) J. Biol. Chem., 291, pp. 15069-15081; Xu, S., Hermanson, D.J., Banerjee, S., Ghebreselasie, K., Clayton, G.M., Garavito, R.M., Marnett, L.J., Oxicams bind in a novel mode to the cyclooxygenase active site via a two-water-mediated H-bonding network (2014) J. Biol. Chem., 289, pp. 6799-6808; Kurumbail, R.G., Stevens, A.M., Gierse, J.K., McDonald, J.J., Stegeman, R.A., Pak, J.Y., Gildehaus, D., Stallings, W.C., Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents (1996) Nature, 384, pp. 644-648; Soliva, R., Almansa, C., Kalko, S.G., Luque, F.J., Orozco, M., Theoretical Studies on the Inhibition Mechanism of Cyclooxygenase-2. Is There a Unique Recognition Site? (2003); Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J., AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility (2009) J. Comput. Chem., 30, pp. 2785-2791; Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., UCSF Chimera?A visualization system for exploratory research and analysis (2004) J. Comput. Chem., 25, pp. 1605-1612; Winter, C.A., Risley, E.A., Nuss, G.W., Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs (1962) Proc. Soc. Exp. Biol. Med., 111, pp. 544-547; Case, D.A., Darden Thomas Cheatham, T.E., III, Simmerling, C., Wang, J., Duke, R.E., Luo, R.C., Walker, R., Kollman, P.A., (2012) Amber, 12; Word, J.M., Lovell, S.C., Richardson, J.S., Richardson, D.C., Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation (1999) J. Mol. Biol., 285, pp. 1735-1747; Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Kollman, P.A., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules (1995) J. Am. Chem. Soc., 117, pp. 5179-5197; Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Simmerling, C., Comparison of multiple Amber force fields and development of improved protein backbone parameters (2006) Proteins Struct. Funct. Bioinforma., 65, pp. 712-725; Wang, J., Wang, W., Kollman, P.A., Case, D.A., Automatic atom type and bond type perception in molecular mechanical calculations (2006) J. Mol. Graph. Model., 25, pp. 247-260; Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A., Development and testing of a general amber force field (2004) J. Comput. Chem., 25, pp. 1157-1174; Alaraby Salem, M., Brown, A., Two-photon absorption of fluorescent protein chromophores incorporating non-canonical amino acids: TD-DFT screening and classical dynamics (2015) Phys. Chem. Chem. Phys., 17, pp. 25563-25571; Roe, D.R., Cheatham, T.E., PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data (2013) J. Chem. Theory Comput., 9, pp. 3084-3095; Paul, J., XMGRACE, Version 5.1. 19. Turner Center for Coastal and Land-Margin Research Oregon Graduate Institute of Science and Technology Beaverton, Oregon; Humphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J. Mol. Graph., 14 (33-8), pp. 27-28 | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_256.png
- Size:
- 6.31 KB
- Format:
- Portable Network Graphics
- Description: