New pyrazole derivatives: Synthesis, anti-inflammatory activity, cycloxygenase inhibition assay and evaluation of mPGES

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorHassan G.S.
dc.contributor.authorAbdel Rahman D.E.
dc.contributor.authorAbdelmajeed E.A.
dc.contributor.authorRefaey R.H.
dc.contributor.authorAlaraby Salem M.
dc.contributor.authorNissan Y.M.
dc.contributor.otherPharmaceutical Chemistry Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherCairo University
dc.contributor.otherKasr Elini St.
dc.contributor.otherCairo
dc.contributor.other11562
dc.contributor.otherEgypt; Pharmaceutical Chemistry Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherBadr University in Cairo
dc.contributor.otherBadr City
dc.contributor.otherCairo
dc.contributor.other11829
dc.contributor.otherEgypt; National Cancer Institute
dc.contributor.otherCairo University
dc.contributor.otherFomElkhalig
dc.contributor.otherKasr Elaini St.
dc.contributor.otherCairo
dc.contributor.other11796
dc.contributor.otherEgypt; Pharmaceutical Chemistry Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Sciences and Arts (MSA)
dc.contributor.otherGiza
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:37Z
dc.date.available2020-01-09T20:40:37Z
dc.date.issued2019
dc.descriptionScopus
dc.description.abstractNew pyrazole derivatives 2�5 were synthesized and evaluated for their COX-1 and COX-2 inhibitory activity in vitro. All compounds showed good inhibitory activity at a nanomolar level and most compounds exhibited selectivity towards COX-2 inhibition. Compounds 2a, 3b, 4a, 5b and 5e exhibited IC50 towards COX-2 enzyme of 19.87, 39.43, 61.24, 38.73 and 39.14 nM, respectively. Furthermore, compounds 3b, 4a, 5b and 5e exhibited a selectivity index of 22.21, 14.35, 17.47 and 13.10, respectively. The most active compounds were further subjected to in vivo anti-inflammatory assay. The tested compounds showed better or comparable activity to celecoxib as positive control. In order to explore their binding mode and selectivity behaviour, molecular docking in the active site of COX-2 was carried out for these derivatives. Analysis of the docked poses of the compounds showed that they adopt similar conformations to the highly selective COX-2 inhibitor, SC-558. The docking pose of compound 3b was confirmed by molecular dynamics. All the tested compounds exhibited potent inhibitory effect on the production of PGE2, in addition to their inhibition of COX-2 enzyme. � 2019 Elsevier Masson SASen_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=17464&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1016/j.ejmech.2019.03.052
dc.identifier.doiPubMed ID 30928706
dc.identifier.issn2235234
dc.identifier.otherhttps://doi.org/10.1016/j.ejmech.2019.03.052
dc.identifier.otherPubMed ID 30928706
dc.identifier.urihttps://t.ly/JKlwY
dc.language.isoEnglishen_US
dc.publisherElsevier Masson SASen_US
dc.relation.ispartofseriesEuropean Journal of Medicinal Chemistry
dc.relation.ispartofseries171
dc.subjectBenzenesulfonamideen_US
dc.subjectmPGESen_US
dc.subjectPyrazoleen_US
dc.subjectSelective COX-2en_US
dc.subject2 chloro n [4 cyano 1 (4 sulfamoylphenyl) 1h pyrazol 5 yl]acetamideen_US
dc.subject3 chloro n [4 cyano 1 (4 sulfamoylphenyl) 1h pyrazol 5 yl]acetamideen_US
dc.subject4 [4 cyano 5 (3,5 dimethoxybenzylidene)amino 1h pyrazol 1 yl]benzene sulfonamideen_US
dc.subject4 [4 cyano 5 (4 fluorobenzylidene)amino 1h pyrazol 1 yl]benzenesulfonamideen_US
dc.subject4 [4 cyano 5 (4 methoxybenzylidene)amino 1h pyrazol 1 yl]benzene sulfonamideen_US
dc.subject4 [5 (4 bromobenzylidene)amino cyano 1h pyrazol 1 yl]benzenesulfonamideen_US
dc.subject4 [5 (4 bromophenyl) 3 trifluoromethyl 1h pyrazol 1 yl]benzenesulfonamideen_US
dc.subject4 [5 (4 chlorobenzylidene)amino cyano 1h pyrazol 1 yl]benzenesulfonamideen_US
dc.subject4 [5 (benzylidene)amino 4 cyano 1h pyrazol 1 yl]benzenesulfonamideen_US
dc.subjectantiinflammatory agenten_US
dc.subjectcelecoxiben_US
dc.subjectcyclooxygenase 1en_US
dc.subjectcyclooxygenase 1 inhibitoren_US
dc.subjectcyclooxygenase 2en_US
dc.subjectcyclooxygenase 2 inhibitoren_US
dc.subjectisoenzymeen_US
dc.subjectn [4 (5 acetamido 4 cyano 1h pyrazol 1 yl)phenyl]sulfonylacetamideen_US
dc.subjectn [4 cyano 1 (4 sulfamoylphenyl) 1h pyrazol 5 yl] 2 morpholinoacetamideen_US
dc.subjectn [4 cyano 1 (4 sulfamoylphenyl) 1h pyrazol 5 yl] 2 morpholinopropionamideen_US
dc.subjectn [4 cyano 1 (4 sulfamoylphenyl) 1h pyrazol 5 yl] 3 morpholinopropionamideen_US
dc.subjectn [4 cyano 1 (4 sulfamoylphenyl) 1h pyrazol 5 yl]benzamideen_US
dc.subjectprostaglandin E2 synthaseen_US
dc.subjectpyrazole derivativeen_US
dc.subjectsulfonamideen_US
dc.subjectunclassified drugen_US
dc.subjectcyclooxygenase 1en_US
dc.subjectcyclooxygenase 2en_US
dc.subjectnonsteroid antiinflammatory agenten_US
dc.subjectprostaglandin synthaseen_US
dc.subjectprostaglandin synthase inhibitoren_US
dc.subjectpyrazoleen_US
dc.subjectpyrazole derivativeen_US
dc.subjectanimal experimenten_US
dc.subjectanimal modelen_US
dc.subjectantiinflammatory activityen_US
dc.subjectArticleen_US
dc.subjectcarbon nuclear magnetic resonanceen_US
dc.subjectcarrageenan-induced paw edemaen_US
dc.subjectcontrolled studyen_US
dc.subjectcytosolen_US
dc.subjectdrug synthesisen_US
dc.subjectenzyme immunoassayen_US
dc.subjecthydrogen bonden_US
dc.subjectIC50en_US
dc.subjectmaleen_US
dc.subjectmicrosomeen_US
dc.subjectmolecular dockingen_US
dc.subjectmolecular dynamicsen_US
dc.subjectnonhumanen_US
dc.subjectproton nuclear magnetic resonanceen_US
dc.subjectraten_US
dc.subjectselectivity indexen_US
dc.subjectchemical structureen_US
dc.subjectchemistryen_US
dc.subjectdose responseen_US
dc.subjectdrug effecten_US
dc.subjectenzymologyen_US
dc.subjecthumanen_US
dc.subjectmetabolismen_US
dc.subjectstructure activity relationen_US
dc.subjectsynthesisen_US
dc.subjectAnti-Inflammatory Agents, Non-Steroidalen_US
dc.subjectCyclooxygenase 1en_US
dc.subjectCyclooxygenase 2en_US
dc.subjectCyclooxygenase Inhibitorsen_US
dc.subjectDose-Response Relationship, Drugen_US
dc.subjectHumansen_US
dc.subjectMicrosomesen_US
dc.subjectMolecular Docking Simulationen_US
dc.subjectMolecular Structureen_US
dc.subjectProstaglandin-Endoperoxide Synthasesen_US
dc.subjectPyrazolesen_US
dc.subjectStructure-Activity Relationshipen_US
dc.titleNew pyrazole derivatives: Synthesis, anti-inflammatory activity, cycloxygenase inhibition assay and evaluation of mPGESen_US
dc.typeArticleen_US
dcterms.isReferencedBySerhan, C.N., Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms (2017) FASEB J., 31, pp. 1273-1288; Poetker, D.M., Reh, D.D., A comprehensive review of the adverse effects of systemic corticosteroids (2010) Otolaryngol. Clin., 43, pp. 753-768; Day, R.O., Graham, G.G., Non-steroidal anti-inflammatory drugs (NSAIDs) (2013) BMJ, 346, p. f3195; Harirforoosh, S., Asghar, W., Jamali, F., Adverse effects of nonsteroidal antiinflammatory drugs: an update of gastrointestinal, cardiovascular and renal complications (2013) J. Pharm. Pharm. Sci., 16, pp. 821-847; Rao, P.P.N., Kabir, S.N., Mohamed, T., Nonsteroidal anti-inflammatory drugs (NSAIDs): progress in small molecule drug development (2010) Pharmaceuticals, 3, pp. 1530-1549; Rouzer, C.A., Marnett, L.J., Cyclooxygenases: structural and functional insights (2009) J. Lipid Res., 50, pp. S29-S34; Seibert, K., Masferrer, J.L., Role of inducible cyclooxygenase (COX-2) in inflammation (1994) Receptor, 4, pp. 17-23; Flower, R.J., The development of COX2 inhibitors (2003) Nat. Rev. Drug Discov., 2, pp. 179-191; Meyer-Kirchrath, J., Schr�r, K., Cyclooxygenase-2 inhibition and side-effects of non-steroidal anti-inflammatory drugs in the gastrointestinal tract (2000) Curr. Med. Chem., 7, pp. 1121-1129; Mart�nez-Gonz�lez, J., Badimon, L., Mechanisms underlying the cardiovascular effects of COX-inhibition: benefits and risks (2007) Curr. Pharmaceut. Des., 13, pp. 2215-2227; Park, J.Y., Pillinger, M.H., Abramson, S.B., Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases (2006) Clin. Immunol., 119, pp. 229-240; Nakanishi, M., Rosenberg, D.W., Multifaceted roles of PGE2 in inflammation and cancer (2013) Semin. Immunopathol., 35, pp. 123-137; Chen, Y., Liu, H., Xu, S., Wang, T., Li, W., Targeting microsomal prostaglandin E 2 synthase-1 (mPGES-1): the development of inhibitors as an alternative to non-steroidal anti-inflammatory drugs (NSAIDs) (2015) Medche123456789/309m, 6, pp. 2081-2123; Khurana, P., Jachak, S.M., Chemistry and biology of microsomal prostaglandin E 2 synthase-1 (mPGES-1) inhibitors as novel anti-inflammatory agents: recent developments and current status (2016) RSC Adv., 6, pp. 28343-28369; Faria, J.V., Vegi, P.F., Miguita, A.G.C., dos Santos, M.S., Boechat, N., Bernardino, A.M.R., Recently reported biological activities of pyrazole compounds (2017) Bioorg. Med. Chem., 25, pp. 5891-5903; Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y., Al-aizari, F., Ansar, M., Synthesis and pharmacological activities of pyrazole derivatives: a review (2018) Molecules, 23, p. 134; Mohammed, K.O., Nissan, Y.M., Synthesis, molecular docking, and biological evaluation of some novel hydrazones and pyrazole derivatives as anti-inflammatory agents (2014) Chem. Biol. Drug Des., 84, pp. 473-488; Abd-El Gawad, N.M., Hassan, G.S., Georgey, H.H., Design and synthesis of some pyrazole derivatives of expected anti-inflammatory and analgesic activities (2012) Med. Chem. Res., 21, pp. 983-994; Abdelgawad, M.A., Labib, M.B., Abdel-Latif, M., Pyrazole-hydrazone derivatives as anti-inflammatory agents: design, synthesis, biological evaluation, COX-1,2/5-LOX inhibition and docking study (2017) Bioorg. Chem., 74, pp. 212-220; Penning, T.D., Talley, J.J., Bertenshaw, S.R., Carter, J.S., Collins, P.W., Docter, S., Graneto, M.J., Isakson, P.C., Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)-3- (trifluoromethyl)-1 H -pyrazol-1-yl]benzenesulfonamide (SC-58635, celecoxib) (1997) J. Med. Chem., 40, pp. 1347-1365; Abdellatif, K.R.A., Fadaly, W.A.A., Elshaier, Y.A.M.M., Ali, W.A.M., Kamel, G.M., Non-acidic 1,3,4-trisubstituted-pyrazole derivatives as lonazolac analogs with promising COX-2 selectivity, anti-inflammatory activity and gastric safety profile (2018) Bioorg. Chem., 77, pp. 568-578; Ren, S.-Z., Wang, Z.-C., Zhu, X.-H., Zhu, D., Li, Z., Shen, F.-Q., Duan, Y.-T., Zhu, H.-L., Design and biological evaluation of novel hybrids of 1, 5-diarylpyrazole and Chrysin for selective COX-2 inhibition (2018) Bioorg. Med. Chem., 26, pp. 4264-4275; Ghareb, N., Elshihawy, H.A., Abdel-Daim, M.M., Helal, M.A., Novel pyrazoles and pyrazolo[1,2-a]pyridazines as selective COX-2 inhibitors; Ultrasound-assisted synthesis, biological evaluation, and DFT calculations (2017) Bioorg. Med. Chem. Lett, 27, pp. 2377-2383; Pavase, L.S., Mane, D.V., Baheti, K.G., Anti-inflammatory exploration of sulfonamide containing diaryl pyrazoles with promising COX-2 selectivity and enhanced gastric safety profile (2018) J. Heterocycl. Chem., 55, pp. 913-922; Abdel-Aziz, H.A., Al-Rashood, K.A., ElTahir, K.E.H., Suddek, G.M., Synthesis of N-benzenesulfonamide-1H-pyrazoles bearing arylsulfonyl moiety: novel celecoxib analogs as potent anti-inflammatory agents (2014) Eur. J. Med. Chem., 80, pp. 416-422; Ashour, H.M.A., El-Ashmawy, I.M., Bayad, A.E., Synthesis and pharmacological evaluation of new pyrazolyl benzenesulfonamides linked to polysubstituted pyrazoles and thiazolidinones as anti-inflammatory and analgesic agents (2016) Monatshefte F�r Chemie - Chem. Mon., 147, pp. 605-618; Sai Ram, K.V.V.M., Rambabu, G., Sarma, J.A.R.P., Desiraju, G.R., Ligand coordinate analysis of SC-558 from the active site to the surface of COX-2: a molecular dynamics study (2006) J. Chem. Inf. Model., 46, pp. 1784-1794; Mohy El-Din, M.M., Senbel, A.M., Bistawroos, A.A., El-Mallah, A., Nour El-Din, N.A., Bekhit, A.A., Abd El Razik, H.A., A novel COX-2 inhibitor pyrazole derivative proven effective as an anti-inflammatory and analgesic drug (2011) Basic Clin. Pharmacol. Toxicol., 108, pp. 263-273; Barsoum, F.F., Girgis, A.S., Facile synthesis of bis(4,5-dihydro-1H-pyrazole-1-carboxamides) and their thio-analogues of potential PGE2 inhibitory properties (2009) Eur. J. Med. Chem., 44, pp. 2172-2177; Ram, V.J., Pandey, H., Pyrazoles and pyrazolo[3,4-d]pyrimidines as biologically active agents, II (1979) Arch. Pharm. (Weinheim), 312, pp. 703-707; Hunsberger, I.M., Shaw, E.R., Fugger, J., Ketcham, R., Lednicer, D., The preparation of substituted hydrazines. IV. Arylhydrazines via conventional methods (1956) J. Org. Chem., 21, pp. 394-399; Widiarini, E., Organic Chemistry, fourth ed., Francis A. Carey, (n.d.); Xavier, A., Srividhya, N., Synthesis and Study of Schiff Base Ligands (2014); Silverstein, R., Webster, F., Kiemle, D., Bryce, D., Spectrometric Identification of Organic Compounds (2014); Murakami, M., Naraba, H., Tanioka, T., Semmyo, N., Nakatani, Y., Kojima, F., Ikeda, T., Kudo, I., Regulation of prostaglandin E2 biosynthesis by inducible membrane-associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2 (2000) J. Biol. Chem., 275, pp. 32783-32792; Murakami, M., Nakashima, K., Kamei, D., Masuda, S., Ishikawa, Y., Ishii, T., Ohmiya, Y., Kudo, I., Cellular prostaglandin E2 production by membrane-bound prostaglandin E synthase-2 via both cyclooxygenases-1 and-2 (2003) J. Biol. Chem., 278, pp. 37937-37947; Wobst, I., Schiffmann, S., Birod, K., Maier, T.J., Schmidt, R., Angioni, C., Geisslinger, G., Gr�sch, S., Dimethylcelecoxib inhibits prostaglandin E2 production (2008) Biochem. Pharmacol., 76, pp. 62-69; Koeberle, A., Werz, O., Inhibitors of the microsomal prostaglandin E2 synthase-1 as alternative to non steroidal anti-inflammatory drugs (NSAIDs)-a critical review (2009) Curr. Med. Chem., 16, pp. 4274-4296; Deckmann, K., R�rsch, F., Steri, R., Schubert-Zsilavecz, M., Geisslinger, G., Gr�sch, S., Dimethylcelecoxib inhibits mPGES-1 promoter activity by influencing EGR1 and NF-?B (2010) Biochem. Pharmacol., 80, pp. 1365-1372; Meade, E.A., Smith, W.L., DeWitt, D.L., Differential inhibition of prostaglandin endoperoxide synthase (cyclooxygenase) isozymes by aspirin and other non-steroidal anti-inflammatory drugs (1993) J. Biol. Chem., 268, pp. 6610-6614; Garavito, R.M., DeWitt, D.L., The cyclooxygenase isoforms: structural insights into the conversion of arachidonic acid to prostaglandins (1999) Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1441, pp. 278-287; Orlando, B.J., Malkowski, M.G., Substrate-selective inhibition of cyclooxygeanse-2 by fenamic acid derivatives is dependent on peroxide tone (2016) J. Biol. Chem., 291, pp. 15069-15081; Xu, S., Hermanson, D.J., Banerjee, S., Ghebreselasie, K., Clayton, G.M., Garavito, R.M., Marnett, L.J., Oxicams bind in a novel mode to the cyclooxygenase active site via a two-water-mediated H-bonding network (2014) J. Biol. Chem., 289, pp. 6799-6808; Kurumbail, R.G., Stevens, A.M., Gierse, J.K., McDonald, J.J., Stegeman, R.A., Pak, J.Y., Gildehaus, D., Stallings, W.C., Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents (1996) Nature, 384, pp. 644-648; Soliva, R., Almansa, C., Kalko, S.G., Luque, F.J., Orozco, M., Theoretical Studies on the Inhibition Mechanism of Cyclooxygenase-2. Is There a Unique Recognition Site? (2003); Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J., AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility (2009) J. Comput. Chem., 30, pp. 2785-2791; Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., UCSF Chimera?A visualization system for exploratory research and analysis (2004) J. Comput. Chem., 25, pp. 1605-1612; Winter, C.A., Risley, E.A., Nuss, G.W., Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs (1962) Proc. Soc. Exp. Biol. Med., 111, pp. 544-547; Case, D.A., Darden Thomas Cheatham, T.E., III, Simmerling, C., Wang, J., Duke, R.E., Luo, R.C., Walker, R., Kollman, P.A., (2012) Amber, 12; Word, J.M., Lovell, S.C., Richardson, J.S., Richardson, D.C., Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation (1999) J. Mol. Biol., 285, pp. 1735-1747; Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Kollman, P.A., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules (1995) J. Am. Chem. Soc., 117, pp. 5179-5197; Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Simmerling, C., Comparison of multiple Amber force fields and development of improved protein backbone parameters (2006) Proteins Struct. Funct. Bioinforma., 65, pp. 712-725; Wang, J., Wang, W., Kollman, P.A., Case, D.A., Automatic atom type and bond type perception in molecular mechanical calculations (2006) J. Mol. Graph. Model., 25, pp. 247-260; Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A., Development and testing of a general amber force field (2004) J. Comput. Chem., 25, pp. 1157-1174; Alaraby Salem, M., Brown, A., Two-photon absorption of fluorescent protein chromophores incorporating non-canonical amino acids: TD-DFT screening and classical dynamics (2015) Phys. Chem. Chem. Phys., 17, pp. 25563-25571; Roe, D.R., Cheatham, T.E., PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data (2013) J. Chem. Theory Comput., 9, pp. 3084-3095; Paul, J., XMGRACE, Version 5.1. 19. Turner Center for Coastal and Land-Margin Research Oregon Graduate Institute of Science and Technology Beaverton, Oregon; Humphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J. Mol. Graph., 14 (33-8), pp. 27-28
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: