Parasitic Suppression in 2D Smart Power ICs Using Deep Trench Isolation: A Simulation Study
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Abouelatta M. | |
dc.contributor.author | Salem M.S. | |
dc.contributor.author | Shaker A. | |
dc.contributor.author | Elbanna M. | |
dc.contributor.author | Zekry A. | |
dc.contributor.author | Gontrand C. | |
dc.contributor.other | Faculty of Engineering | |
dc.contributor.other | Ain Shams University | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Computer College | |
dc.contributor.other | Hail University | |
dc.contributor.other | Hail | |
dc.contributor.other | Saudi Arabia; Modern Science and Arts University (MSA) | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; INSA- Lyon | |
dc.contributor.other | Villeurbanne | |
dc.contributor.other | France; IEP | |
dc.contributor.other | Universit� Euro-m�diterran�enne de F�s | |
dc.contributor.other | INSA- F�s | |
dc.contributor.other | F�s | |
dc.contributor.other | Morocco | |
dc.date.accessioned | 2020-01-09T20:40:45Z | |
dc.date.available | 2020-01-09T20:40:45Z | |
dc.date.issued | 2019 | |
dc.description | Scopus | |
dc.description.abstract | In this letter, a planar integration using the deep trench isolation (DTI) technique is proposed to suppress the inter-well parasites in smart power integrated circuits implemented in 0.35��m BiCMOS technology. In this technology, all devices share the same epitaxial layer. This can lead to a punch-through between power devices as well as between power and low-voltage CMOS devices. A DTI scheme is used to suppress the effect of the parasitic BJT by using a P+ retardation implant region under the deep trench isolation region. The injection ratio of the parasitic BJT is reduced by a factor between 3 and 8.5. The effect of the trench length and the retardation implant is investigated using SENTAURUS TCAD simulations. It is confirmed, through using TCAD simulations, that the amount of the collected carriers of the sensitive devices changes as a function of the trench length and the presence of the retardation implant. � 2019, The National Academy of Sciences, India. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=4000151816&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1007/s40009-019-00830-0 | |
dc.identifier.doi | PubMed ID : | |
dc.identifier.issn | 0250541X | |
dc.identifier.other | https://doi.org/10.1007/s40009-019-00830-0 | |
dc.identifier.other | PubMed ID : | |
dc.identifier.uri | https://t.ly/6w1J7 | |
dc.language.iso | English | en_US |
dc.publisher | Natural Sciences Publishing | |
dc.publisher | Springer | en_US |
dc.relation.ispartofseries | National Academy Science Letters | |
dc.subject | October University for Modern Sciences and Arts | |
dc.subject | University for Modern Sciences and Arts | |
dc.subject | MSA University | |
dc.subject | جامعة أكتوبر للعلوم الحديثة والآداب | |
dc.subject | 0.35��m BiCMOS | en_US |
dc.subject | 2D smart power ICs | en_US |
dc.subject | Deep trench isolation | en_US |
dc.subject | Parasitic suppression | en_US |
dc.subject | TCAD | en_US |
dc.title | Parasitic Suppression in 2D Smart Power ICs Using Deep Trench Isolation: A Simulation Study | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Khemka, V., Zhu, R., Bose, A., Roggenbauer, T., Optimization and elimination of parasitic latchup in advanced smart-power technologies (2007) IEEE Trans Dev Mater Reliab, 7 (1), pp. 69-73; Lo Conte, F., Sallese, J.M., Pastre, M., Krummenacher, F., Kayal, M., Global modeling strategy of parasitic coupled currents induced by minority-carrier propagation in semiconductor substrates (2010) IEEE Trans Electron Dev, 57 (1), pp. 263-272; Stefanucci, C., Buccella, P., Kayal, M., Sallese, J.M., Spice-compatible modeling of high injection and propagation of minority carriers in the substrate of Smart Power ICs (2015) Solid State Electron, 105, pp. 21-29; Chan, W.W.T., Sin, J.K.O., Wong, S.S., A novel crosstalk isolation structure for bulk CMOS power IC�s (1998) IEEE Trans Electron Dev, 45 (7), pp. 1580-1586; Gupta, S., Beckman, J.C., Kosier, S.L., Unbiased guard ring for latchup-resistant, junction-isolated smart-power ICs (2001) IEEE Proc BCTM, pp. 188-191; Parthasarathy, V., Zhu, R., Khemka, V., Roggenbauer, T., Bose, A., Hui, P., Rodriquez, P., Butner, M., A 0.25 �m CMOS based 70 V smart power technology with deep trench for high- voltage isolation (2002) Proc. IEDM, pp. 459-462; Ferrari, R., Morelli, N.M., New levels of integration in automotive electronics (1991) International Symposium on Vehicle Electronics Integration, pp. 187-201; Wolf, S., (2002) Silicon processing for the VLSI era, , Lattice Press, Sunset Beach; Berberich, S.E., Bauer, A.J., Frey, L., Ryssell, H., Trench sidewall doping for lateral power devices (2003) IEEE Proc of ESSDERC, pp. 379-382; Valorge, O., Sun, F., Lorival, J.E., Abouelatta-Ebrahim, M., Calmon, F., Gontrand, C., Analytical and numerical model confrontation for transfer impedance extraction in three-dimensional radio frequency circuits (2012) Circuits Syst, 3 (2), pp. 126-135; Abouelatta-Ebrahim, M., Shaker, A., Sayah, G.T., Gontrand, C., Zekry, A., Design considerations of high voltage RESURF nLDMOS: an analytical and numerical study (2015) Ain Shams Eng J, 6 (2), pp. 501-509 | |
dcterms.source | Scopus |