Parasitic Suppression in 2D Smart Power ICs Using Deep Trench Isolation: A Simulation Study

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorAbouelatta M.
dc.contributor.authorSalem M.S.
dc.contributor.authorShaker A.
dc.contributor.authorElbanna M.
dc.contributor.authorZekry A.
dc.contributor.authorGontrand C.
dc.contributor.otherFaculty of Engineering
dc.contributor.otherAin Shams University
dc.contributor.otherCairo
dc.contributor.otherEgypt; Computer College
dc.contributor.otherHail University
dc.contributor.otherHail
dc.contributor.otherSaudi Arabia; Modern Science and Arts University (MSA)
dc.contributor.otherCairo
dc.contributor.otherEgypt; INSA- Lyon
dc.contributor.otherVilleurbanne
dc.contributor.otherFrance; IEP
dc.contributor.otherUniversit� Euro-m�diterran�enne de F�s
dc.contributor.otherINSA- F�s
dc.contributor.otherF�s
dc.contributor.otherMorocco
dc.date.accessioned2020-01-09T20:40:45Z
dc.date.available2020-01-09T20:40:45Z
dc.date.issued2019
dc.descriptionScopus
dc.description.abstractIn this letter, a planar integration using the deep trench isolation (DTI) technique is proposed to suppress the inter-well parasites in smart power integrated circuits implemented in 0.35��m BiCMOS technology. In this technology, all devices share the same epitaxial layer. This can lead to a punch-through between power devices as well as between power and low-voltage CMOS devices. A DTI scheme is used to suppress the effect of the parasitic BJT by using a P+ retardation implant region under the deep trench isolation region. The injection ratio of the parasitic BJT is reduced by a factor between 3 and 8.5. The effect of the trench length and the retardation implant is investigated using SENTAURUS TCAD simulations. It is confirmed, through using TCAD simulations, that the amount of the collected carriers of the sensitive devices changes as a function of the trench length and the presence of the retardation implant. � 2019, The National Academy of Sciences, India.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=4000151816&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1007/s40009-019-00830-0
dc.identifier.doiPubMed ID :
dc.identifier.issn0250541X
dc.identifier.otherhttps://doi.org/10.1007/s40009-019-00830-0
dc.identifier.otherPubMed ID :
dc.identifier.urihttps://t.ly/6w1J7
dc.language.isoEnglishen_US
dc.publisherNatural Sciences Publishing
dc.publisherSpringeren_US
dc.relation.ispartofseriesNational Academy Science Letters
dc.subjectOctober University for Modern Sciences and Arts
dc.subjectUniversity for Modern Sciences and Arts
dc.subjectMSA University
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subject0.35��m BiCMOSen_US
dc.subject2D smart power ICsen_US
dc.subjectDeep trench isolationen_US
dc.subjectParasitic suppressionen_US
dc.subjectTCADen_US
dc.titleParasitic Suppression in 2D Smart Power ICs Using Deep Trench Isolation: A Simulation Studyen_US
dc.typeArticleen_US
dcterms.isReferencedByKhemka, V., Zhu, R., Bose, A., Roggenbauer, T., Optimization and elimination of parasitic latchup in advanced smart-power technologies (2007) IEEE Trans Dev Mater Reliab, 7 (1), pp. 69-73; Lo Conte, F., Sallese, J.M., Pastre, M., Krummenacher, F., Kayal, M., Global modeling strategy of parasitic coupled currents induced by minority-carrier propagation in semiconductor substrates (2010) IEEE Trans Electron Dev, 57 (1), pp. 263-272; Stefanucci, C., Buccella, P., Kayal, M., Sallese, J.M., Spice-compatible modeling of high injection and propagation of minority carriers in the substrate of Smart Power ICs (2015) Solid State Electron, 105, pp. 21-29; Chan, W.W.T., Sin, J.K.O., Wong, S.S., A novel crosstalk isolation structure for bulk CMOS power IC�s (1998) IEEE Trans Electron Dev, 45 (7), pp. 1580-1586; Gupta, S., Beckman, J.C., Kosier, S.L., Unbiased guard ring for latchup-resistant, junction-isolated smart-power ICs (2001) IEEE Proc BCTM, pp. 188-191; Parthasarathy, V., Zhu, R., Khemka, V., Roggenbauer, T., Bose, A., Hui, P., Rodriquez, P., Butner, M., A 0.25 �m CMOS based 70 V smart power technology with deep trench for high- voltage isolation (2002) Proc. IEDM, pp. 459-462; Ferrari, R., Morelli, N.M., New levels of integration in automotive electronics (1991) International Symposium on Vehicle Electronics Integration, pp. 187-201; Wolf, S., (2002) Silicon processing for the VLSI era, , Lattice Press, Sunset Beach; Berberich, S.E., Bauer, A.J., Frey, L., Ryssell, H., Trench sidewall doping for lateral power devices (2003) IEEE Proc of ESSDERC, pp. 379-382; Valorge, O., Sun, F., Lorival, J.E., Abouelatta-Ebrahim, M., Calmon, F., Gontrand, C., Analytical and numerical model confrontation for transfer impedance extraction in three-dimensional radio frequency circuits (2012) Circuits Syst, 3 (2), pp. 126-135; Abouelatta-Ebrahim, M., Shaker, A., Sayah, G.T., Gontrand, C., Zekry, A., Design considerations of high voltage RESURF nLDMOS: an analytical and numerical study (2015) Ain Shams Eng J, 6 (2), pp. 501-509
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
Abouelatta2020_Article_ParasiticSuppressionIn2DSmartP.pdf
Size:
531.87 KB
Format:
Adobe Portable Document Format
Description: