A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorBelwal T.
dc.contributor.authorEzzat, Shahira M
dc.contributor.authorRastrelli L.
dc.contributor.authorBhatt I.D.
dc.contributor.authorDaglia M.
dc.contributor.authorBaldi A.
dc.contributor.authorDevkota H.P.
dc.contributor.authorOrhan I.E.
dc.contributor.authorPatra J.K.
dc.contributor.authorDas G.
dc.contributor.authorAnandharamakrishnan C.
dc.contributor.authorGomez-Gomez L.
dc.contributor.authorNabavi S.F.
dc.contributor.authorNabavi S.M.
dc.contributor.authorAtanasov A.G.
dc.contributor.otherG. B. Pant National Institute of Himalayan Environment and Sustainable Development
dc.contributor.otherKosi-Katarmal
dc.contributor.otherAlmora
dc.contributor.otherUttarakhand 263643
dc.contributor.otherIndia; Department of Pharmacognosy
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherCairo University
dc.contributor.otherGiza
dc.contributor.otherEgypt; Department of Pharmacognosy
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Science and Arts (MSA)
dc.contributor.other6th October
dc.contributor.other12566
dc.contributor.otherEgypt; Dipartimento diFarmacia
dc.contributor.otherUniversity of Salerno
dc.contributor.othervia Giovanni Paolo II
dc.contributor.otherFisciano
dc.contributor.other84084
dc.contributor.otherItaly; Department of Drug Sciences
dc.contributor.otherMedicinal Chemistry and Pharmaceutical Technology Section
dc.contributor.otherPavia University
dc.contributor.otherVialeTaramelli 12
dc.contributor.otherPavia
dc.contributor.other27100
dc.contributor.otherItaly; School of Pharmacy
dc.contributor.otherKumamoto University
dc.contributor.other5-1 Oe-honmachi
dc.contributor.otherChuo ku
dc.contributor.otherKumamoto 862-0973
dc.contributor.otherJapan; Program for Leading Graduate Schools
dc.contributor.otherHealth life Science: Interdisciplinary and Glocal Oriented (HIGO) Program
dc.contributor.otherKumamoto University
dc.contributor.otherKumamoto
dc.contributor.otherJapan; Department of Pharmacognosy
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherGazi University
dc.contributor.otherAnkara
dc.contributor.other06330
dc.contributor.otherTurkey; Research Institute of Biotechnology & Medical Converged Science
dc.contributor.otherDongguk University-Seoul
dc.contributor.otherGoyang-si
dc.contributor.other10326
dc.contributor.otherSouth Korea; Computational Modelling and Nanoscale Processing Unit
dc.contributor.otherIndian Institute of Food Processing Technology
dc.contributor.otherThanjavur
dc.contributor.otherTamil Nadu 613005
dc.contributor.otherIndia; Facultad de Farmacia
dc.contributor.otherUniversidad de Dastilla-La Mancha
dc.contributor.otherCampus Universitario S/n
dc.contributor.otherAlbacete
dc.contributor.other02071
dc.contributor.otherSpain; Applied Biotechnology Research Center
dc.contributor.otherBaqiyatallah University of Medical SciencesTehran
dc.contributor.otherIran; Molecular Biology Department
dc.contributor.otherInstitute of Genetics and Animal Breeding of the Polish Academy of Sciences
dc.contributor.otherJastrzebiec
dc.contributor.otherPoland; Department of Pharmacognosy
dc.contributor.otherUniversity of Vienna
dc.contributor.otherAlthanstrasse14
dc.contributor.otherVienna
dc.contributor.other1090
dc.contributor.otherAustria
dc.date.accessioned2020-01-09T20:40:59Z
dc.date.available2020-01-09T20:40:59Z
dc.date.issued2018
dc.descriptionScopus
dc.descriptionMSA Google Scholar
dc.description.abstractPlant extracts have been long used by the traditional healers for providing health benefits and are nowadays suitable ingredient for the production of formulated health products and nutraceuticals. Traditional methods of extraction such as maceration, percolation, digestion, and preparation of decoctions and infusions are now been replaced by advanced extraction methods for increased extraction efficiency and selectivity of bioactive compounds to meet up the increasing market demand. Advanced techniques use different ways for extraction such as microwaves, ultrasound waves, supercritical fluids, enzymes, pressurized liquids, electric field, etc. These innovative extraction techniques, afford final extracts selectively rich in compounds of interest without formation of artifacts, and are often simple, fast, environment friendly and fully automated compared to existing extraction method. The present review is focused on the recent trends on the extraction of different bioactive chemical constituents depending on the nature of sample matrices and their chemical classes including anthocyanins, flavonoids, polyphenols, alkaloids, oils, etc. In addition, we review the strategies for designing extraction, selection of most suitable extraction methods, and trends of extraction methods for botanicals. Recent progress on the research based on these advanced methods of extractions and their industrial importance are also discussed in detail. � 2017 Elsevier B.V.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=30867&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1016/j.trac.2017.12.018
dc.identifier.doiPubMed ID :
dc.identifier.otherhttps://doi.org/10.1016/j.trac.2017.12.018
dc.identifier.otherPubMed ID :
dc.identifier.urihttps://t.ly/dOgZM
dc.relation.ispartofseriesTrAC - Trends in Analytical Chemistry
dc.relation.ispartofseries100
dc.subjectAdvanced extraction techniquesen_US
dc.subjectBioactive compoundsen_US
dc.subjectGreen extractionen_US
dc.subjectMicrowave assisted extraction (MAE)en_US
dc.subjectPlant matricesen_US
dc.subjectPressurized liquid extraction (PLE)en_US
dc.subjectSupercritical fluid extraction (SFE)en_US
dc.subjectUltrasonic assisted extraction (UAE)en_US
dc.subjectAnthocyaninsen_US
dc.subjectEffluent treatmenten_US
dc.subjectElectric fieldsen_US
dc.subjectIndustrial researchen_US
dc.subjectPlant extractsen_US
dc.subjectSolventsen_US
dc.subjectSupercritical fluid extractionen_US
dc.subjectSupercritical fluidsen_US
dc.subjectBioactive compoundsen_US
dc.subjectExtraction techniquesen_US
dc.subjectGreen extractionsen_US
dc.subjectMicrowave-assisted extractionen_US
dc.subjectPressurized liquid extractionen_US
dc.subjectSupercritical fluid extraction (SFE)en_US
dc.subjectUltrasonic-assisted extractionsen_US
dc.subjectExtractionen_US
dc.subjectalkaloiden_US
dc.subjectanthocyaninen_US
dc.subjectcarotenoiden_US
dc.subjectflavonoiden_US
dc.subjectplant extracten_US
dc.subjectpolyphenolen_US
dc.subjectpolysaccharideen_US
dc.subjectsaponinen_US
dc.subjectsolventen_US
dc.subjectvegetable oilen_US
dc.subjectbarken_US
dc.subjectBox Behnken designen_US
dc.subjectcentral composite designen_US
dc.subjectenzyme assisted extractionen_US
dc.subjectextractionen_US
dc.subjectfloweren_US
dc.subjectfruiten_US
dc.subjectmicrowave assisted extractionen_US
dc.subjectmoistureen_US
dc.subjectnonhumanen_US
dc.subjectparticle sizeen_US
dc.subjectplanten_US
dc.subjectplant leafen_US
dc.subjectplant rooten_US
dc.subjectplant seeden_US
dc.subjectpressurized liquid extractionen_US
dc.subjectpriority journalen_US
dc.subjectpulsed electric fielden_US
dc.subjectpulsed electric field assisted extractionen_US
dc.subjectresponse surface methoden_US
dc.subjectReviewen_US
dc.subjectrhizomeen_US
dc.subjectsupercritical fluid extractionen_US
dc.subjectultrasonic assisted extractionen_US
dc.titleA critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategiesen_US
dcterms.isReferencedByKhoddami, A., Wilkes, M., Roberts, T., Techniques for analysis of plant phenolic compounds (2013) Molecules, 18, pp. 2328-2375; Chemat, F., Vian, M.A., Cravotto, G., Green extraction of natural products: concept and principles (2012) Int. J. Mol. Sci., 13, pp. 8615-8627; Ganzler, K., Szinai, I., Salgo, A., Effective sample preparation method for extracting biologically active compounds from different matrices by a microwave technique (1990) J. Chromatogr. A, 520, pp. 257-262; Veggi, P.C., Martinez, J., Meireles, M.A.A., Fundamentals of Microwave Extraction. In Microwave-assisted Extraction for Bioactive Compounds (2012), pp. 15-52. , Springer US; Specht, W., Lebensm, Z., (1952), 94, p. 157. , Untersuch. ul-Forsch; Specht, W., Schulteis, W.E., Beer Brewing Process, US2,816,031. Germany (1957), p. 10; Vinatoru, M., Mason, T.J., Calinescu, I., Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials (2017) Trends Analyt. Chem., 97, pp. 159-178; Miljevic, B., Hedayat, F., Stevanovic, S., Fairfull-Smith, K.E., Bottle, S.E., Ristovski, Z.D., To sonicate or not to sonicate PM filters: reactive oxygen species generation upon ultrasonic irradiation (2014) Aerosol Sci. Tech, 48, pp. 1276-1284; Biesaga, M., Pyrzy?ska, K., Stability of bioactive polyphenols from honey during different extraction methods (2013) Food Chem., 136, pp. 46-54; Qiao, L., Sun, Y., Chen, R., Fu, Y., Zhang, W., Li, X., Chen, J., Ye, X., Sonochemical effects on 14 flavonoids common in citrus: relation to stability (2014) PloS one, 9, p. e87766; Chemat, F., Rombaut, N., Sicaire, A.G., Meullemiestre, A., Fabiano-Tixier, A.S., Abert-Vian, M., Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review (2017) Ultrason. Sonochem., 34, pp. 540-560; Jaeger, H., Schulz, M., Lu, P., Knorr, D., Adjustment of milling, mash electroporation and pressing for the development of a PEF assisted juice production in industrial scale (2012) Innov. Food Sci.Emerg. Tech, 14, pp. 46-60; Sale, A.J.A., Hamilton, W.A., Effects of high electric fields on microorganisms: I. Killing of bacteria and yeasts (1967) Biochim. Biophys. Acta Gen. Subj., 148 (3), pp. 781-788; Mahni?-Kalamiza, S., Vorobiev, E., Miklav?i?, D., Electroporation in food processing and biorefinery (2014) J. Membr. Biol., 247 (12), pp. 1279-1304; Chemat, F., Fabiano-Tixier, A.S., Vian, M.A., Allaf, T., Vorobiev, E., Solvent-free extraction of food and natural products (2015) Trends Analyt. Chem., 71, pp. 157-168; Ngadi, M., Raghavan, V., Gachovska, T., (2012), The Royal Institution for the Advancement of Learning/Mcgill University, Pulsed electric field enhanced method of extraction. U.S. Patent 8,147,879; Gachovska, T.K., Ngadi, M., Chetti, M., Raghavan, G.V., Enhancement of lycopene extraction from tomatoes using pulsed electric field (2013) Pulsed Power Conference (PPC), 2013 19th IEEE, pp. 1-5; Munish, P., Deepika, S., Colin, J.B., Enzyme-assisted extraction of bioactives from plants (2012) Trends Biotechnol., 30, pp. 37-44. , http://www.sciencedirect.com/science/journal/01677799; Baiano, A., Recovery of biomolecules from food wastes � a review (2014) Molecules, 19, pp. 14821-14842; Khaw, K.Y., Parat, M.O., Shaw, P.N., Falconer, J.R., Solvent supercritical fluid technologies to extract bioactive compounds from natural sources: a review (2017) Molecules, 22. , pii: E1186; Doughari, J.H., Phytochemicals: extraction methods, basic structures and mode of action as potential chemotherapeutic agents (2012) Phytochemicals-a Global Perspective of Their Role in Nutrition and Health, , INTECH Open Access Publisher; Patil, P.S., Shettigar, R., An advancement of analytical techniques in herbal research (2010) J. Adv. Sci. Res., 1, pp. 8-14; Bertucco, A., Franceschin, G., Supercritical fluid extraction of medicinal and aromatic plants: fundamentals and applications (2008) Extraction Technologies for Medicinal and Aromatic Plants, pp. 169-180. , International Centre for Science and High Technology; Catchpole, O.J., Grey, J.B., Mitchell, K.A., Lan, J.S., Supercritical antisolvent fractionation of propolis tincture (2004) J. Supercrit. Fluids, 29, pp. 97-106; Catchpole, O.J., Tallon, S.J., Eltringham, W.E., Grey, J.B., Fenton, K.A., Vagi, E.M., Vyssotski, M.V., Zhu, Y., The extraction and fractionation of specialty lipids using near critical fluids (2009) J. Supercrit. Fluids, 47, pp. 591-597; L, Q.X., Denery, J.R., Dragull, K., Tang, C.S., Pressurized fluid extraction of carotenoids from Haematococcus pluvialis and Dunaliella salina and kavalactones from Piper methysticum (2004) Anal. Chim. Acta, 501, pp. 175-181; Eng-Shi Ong, Y.-L.Y., Woo, S.-O., Pressurized liquid extraction of berberine and aristolochic acids in medicinal plants (2000) J. Chromatogr. A, 904, pp. 57-64; Bj�rn Benthin, M.H., Danz, H., Pressurized liquid extraction of medicinal plants (1999) J. Chromatogr. A, 837, pp. 211-219; Zhang, D.Y., Yao, X.H., Duan, M.H., Luo, M., Wang, W., Fu, Y.J., Zu, Y.G., Efferth, T., An effective negative pressure cavitation-microwave assisted extraction for determination of phenolic compounds in P. calliantha H. Andr (2013) Analyst, 138, pp. 4631-4641; Liu, W., Fu, Y., Zu, Y., Kong, Y., Zhang, L., Zu, B., Efferth, T., Negative-pressure cavitation extraction for the determination of flavonoids in pigeon pea leaves by liquid chromatography�tandem mass spectrometry (2009) J. Chromatogr. A, 1216, pp. 3841-3850; Mu, F., Yang, L., Wang, W., Luo, M., Fu, Y., Guo, X., Zu, Y., Negative-pressure cavitation extraction of four main vinca alkaloids from Catharanthus roseus leaves (2012) Molecules, 17, pp. 8742-8752; Zhang, D.Y., Zu, Y.G., Fu, Y.J., Luo, M., Wang, W., Gu, C.B., Zhao, C.J., Efferth, T., Enzyme pretreatment and negative pressure cavitation extraction of genistein and apigenin from the roots of pigeon pea [Cajanus cajan (L.) Millsp.] and the evaluation of antioxidant activity (2012) Ind. Crop. Prod., 37, pp. 311-320; Kong, Y., Wei, Z.F., Fu, Y.J., Gu, C.B., Zhao, C.J., Yao, X.H., Efferth, T., Negative-pressure cavitation extraction of cajaninstilbene acid and pinostrobin from pigeon pea [Cajanus cajan (L.)Millsp.] leaves and valuation of antioxidant activity (2011) Food Chem., 128, pp. 596-605; Jiao, J., Wei, F.Y., Gai, Q.Y., Wang, W., Luo, M., Fu, Y.J., Ma, W., A pilot-scale homogenization-assisted negative pressure cavitation extraction of Astragalus polysaccharides (2014) Int. J. Biol. Macromol., 67, pp. 189-194; Luo, M., Yang, L.-Q., Yao, X.-H., Mu, F.-S., Zhang, D.-Y., Song, Z.-Y., Qiao, Q., Zu, Y.-G., Optimization of enzyme-assisted negative pressure cavitation extraction of five main indole alkaloids from Catharanthus roseus leaves and its pilot-scale application (2014) Separ. Purif. Technol., 125, pp. 66-73; Galanakis, C.M., Recovery of high added-value components from food wastes: conventional, emerging technologies and commercialized applications (2012) Trends Food Sci. Technol., 26, pp. 68-87; Al-Mansoub, M.A., Asmawi, M.Z., Murugaiyah, V., Effect of extraction solvents and plant parts used on the antihyperlipidemic and antioxidant effects of Garcinia atroviridis?: a comparative study (2014) J. Sci. Food Agric., 94, pp. 1552-1558; Alex, L.S.G.T., Trindade, S.N., Dantas, A.F., Lima, D.C., Ferreira, S.L.C., Multivariate optimization of ultrasound-assisted extraction for determination of Cu, Fe, Ni and Zn in vegetable oils by high-resolution continuum source atomic absorption spectrometry (2015) Food Chem., 185, pp. 145-150; Azwanida, N.N., Aromatic plants a review on the extraction methods use in medicinal plants, principle, strength and limitation (2015) Med. Aromatic Plants, 4, pp. 2167-2412; Chan, C.H., Yusoff, R., Ngoh, G.C., Kung, F.W.L., Microwave-assisted extractions of active ingredients from plants (2011) J. Chromatogr. A, 1218, pp. 6213-6225; Herrero, M., Cifuentes, A., Iban�ez, E., Sub- and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by-products, algae and microalgae: a review (2006) Food Chem., 98, pp. 136-148; Lang, Q., Wai, C.M., Supercritical fluid extraction in herbal and natural product studies � a practical review (2001) Talanta, 53, pp. 771-782; Mustafa, A., Turner, C., Pressurized liquid extraction as a green approach in food and herbal plants extraction: a review (2011) Anal. Chim. Acta, 703, pp. 8-18; Barba, F.J., Zhu, Z., Koubaa, M., Sant'Ana, A.S., Orlien, V., Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: a review (2016) Trends Food Sci. Technol., 49, pp. 96-109; Ameer, K., Shahbaz, H.M., Kwon, J.H., Green extraction methods for polyphenols from plant matrices and their byproducts: a review (2017) Compr. Rev. Food Sci. Food Saf., 16, pp. 295-315; Sookjitsumran, W., Devahastin, S., Mujumdar, A.S., Chiewchan, N., Comparative evaluation of microwave-assisted extraction and preheated solvent extraction of bioactive compounds from a plant material: a case study with cabbages (2016) Int. J. Food Sci. Tech, 51, pp. 2440-2449; Starmans, D.A.J., Nijhuis, H.H., Extraction of secondary metabolites from plant material: a review (1996) Trends Food Sci. Technol., 7, pp. 191-196; Wang, L., Weller, C.L., Recent advances in extraction of nutraceuticals from plants (2006) Trends Food Sci. Technol., 17, pp. 300-312; Wijngaard, H., Hossain, M.B., Rai, D.K., Brunton, N., Techniques to extract bioactive compounds from food by-products of plant origin (2012) Food Res. Int., 46, pp. 505-513; Roohinejad, S., Koubaa, M., Barba, F.J., Greiner, R., Orlien, V., Lebovka, N.I., Negative pressure cavitation extraction: a novel method for extraction of food bioactive compounds from plant materials (2016) Trends Food Sci. Technol., 52, pp. 98-108; Xi, J., Ultrahigh pressure extraction of bioactive compounds from plants-a review (2015) Crit. Rev. Food Sci. Nutr., 57, pp. 1097-1106; Mandal, V., Tandey, R., A critical analysis of publication trends from 2005-2015 in microwave assisted extraction of botanicals: how far we have come and the road ahead (2016) Trends Anal. Chem., 82, pp. 100-108; Bobinait?, R., Pataro, G., Lamanauskas, N., �atkauskas, S., Vi�kelis, P., Ferrari, G., Application of pulsed electric field in the production of juice and extraction of bioactive compounds from blueberry fruits and their by-products (2015) J. Food Sci. Technol., 52, pp. 5898-5905; Aleksandra Zderic, E.Z., Polyphenol extraction from fresh tea leaves by pulsed electric field: a study of mechanisms (2016) Chem. Eng. Res. Des., 109, pp. 586-592; Elisa Luengo, J.R., �lvarez, I., Improving the pressing extraction of polyphenols of orange peel by pulsed electric fields (2013) Innovat. Food Sci. Emerg. Technol., 17, pp. 79-84; Bansal, V., Sharma, A., Ghanshyam, C., Singla, M.L., Optimization and characterization of pulsed electric field parameters for extraction of quercetin and ellagic acid in Emblica officinalis juice (2014) J. Food Meas. Charact., 8, pp. 225-233; Sousa, A.D., Maia, A.I.V., Rodrigues, T.H.S., Canuto, K.M., Ribeiro, P.R.V., Pereira, R.D.C.A., Vieira, R.F., de Brito, E.S., Ultrasound-assisted and pressurized liquid extraction of phenolic compounds from Phyllanthus amarus and its composition evaluation by UPLC-QTOF (2016) Ind. Crop. Prod., 79, pp. 91-103; Qiu, F., Tong, Z., Gao, J., Wang, M., Gong, M., Rapid and simultaneous quantification of seven bioactive components in Radix Astragali based on pressurized liquid extraction combined with HPLC-ESI-MS/MS analysis (2015) Anal. Methods., 7, pp. 3054-3062; Lao, S.C., Li, S.P., Kan, K.K., Li, P., Wan, J.B., Wang, Y.T., Dong, T.T., Tsim, K.W., Identification and quantification of 13 components in Angelica sinensis (Danggui) by gas chromatography�mass spectrometry coupled with pressurized liquid extraction (2004) Anal. Chim. Acta, 526, pp. 131-137; Zabot, G.L., Meireles, M.A.A., On-line process for pressurized ethanol extraction of onion peels extract and particle formation using supercritical antisolvent (2016) J. Supercrit. Fluids, 110, pp. 230-239; El Abdellaoui, S., Destandau, E., Toribio, A., Elfakir, C., Lafosse, M., Renimel, I., Andr�, P., Landemarre, L., Bioactive molecules in Kalanchoe pinnata leaves: extraction, purification, and identification (2010) Anal. Bioanal. Chem., 398, pp. 1329-1338; Sae-Yun, A., Ovatlarnporn, C., Itharat, A., Wiwattanapatapee, R., Extraction of rotenone from Derris elliptica and Derris malaccensis by pressurized liquid extraction compared with maceration (2006) J. Chromatogr. A, 1125, pp. 172-176; Carla Da Porto, A.N., Natolino, A., Supercritical fluid extraction of polyphenols from grape seed (Vitis vinifera): study on process variables and kinetics (2017) J. Supercrit. Fluids, 130, pp. 239-245; Yilmaz, E.E., �zvural, E.B., Vural, H., Extraction and identification of proanthocyanidins from grape seed (Vitis vinifera) using supercritical carbon dioxide (2011) J. Supercrit. Fluids, 55, pp. 924-928; Murga, R., Ruiz, R., Sagrario Beltr�n, C.J.L., Extraction of natural complex phenols and tannins from grape seeds by using supercritical mixtures of carbon dioxide and alcohol (2000) J. Agric. Food Chem., 48; T�nde Vatai, �.K., �kerget, M., Extraction of phenolic compounds from elder berry and different grape marc varieties using organic solvents and/or supercritical carbon dioxide (2009) J. Food Eng., 90, pp. 246-254; Jovanovi?, A.A., ?or?evi?, V.B., Zduni?, G.M., Pljevljaku�i?, D.S., �avikin, K.P., Go?evac, D.M., Bugarski, B.M., Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat-and ultrasound-assisted techniques (2017) Separ. Purif. Technol., 179, pp. 369-380; Huynh, N.T., Smagghe, G., Gonzales, G.B., Van Camp, J., Raes, K., Enzyme-assisted extraction enhancing the phenolic release from cauliflower (Brassica oleracea L. var. botrytis) outer leaves (2014) J. Agric. Food Chem., 62, pp. 7468-7476; Zhihao Zhou, X.Y., Shao, H., Han, X., Wang, K., Gong, C., The extraction efficiency enhancement of polyphenols from Ulmus pumila L. barks by trienzyme-assisted extraction (2017) Ind. Crop. Prod., 97, pp. 401-408; Milica Rami?, B.P., Vidovi?, S., Zekovi?, Z., Vladi?, J., Cvejin, A., Modeling and optimization of ultrasound-assisted extraction of polyphenolic compounds from Aronia melanocarpa by-products from filter-tea factory (2015) Ultrason. Sonochem., 23, pp. 360-368; Muhammad Mushtaq, S.S.H.R., Sultana, B., Anward, F., Adnan, A., Enzyme-assisted supercritical fluid extraction of phenolic antioxidants from pomegranate peel (2015) J. Supercrit. Fluids, 104, pp. 122-131; Khuwijitjaru, P., Plernjit, J., Suaylam, B., Samuhaseneetoo, S., Pongsawatmanit, R., Adachi, S., Degradation kinetics of some phenolic compounds in subcritical water and radical scavenging activity of their degradation products (2014) Can. J. Chem. Eng., 92, pp. 810-815; Ballard, T.S., Mallikarjunan, P., Zhou, K., O'Keefe, S., Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins (2010) Food Chem., 120, pp. 1185-1192; Dragovi?-Uzelac, V., Elez Garofuli?, V.I., Juki?, M., Peni?, M., Dent, M., The influence of microwave-assisted extraction on the isolation of sage (Salvia officinalis L.) polyphenols (2012) Food Technol. Biotechnol., 50, pp. 377-383; Hamzah, N., Leo, C.P., Microwave-assisted extraction of Trigona propolis: the effects of processing parameters (2015) Int. J. Chem. Eng., 11, pp. 861-870; Calinescu, I., Lavric, V., Asofiei, I., Gavrila, A.I., Trifan, A., Ighigeanu, D., Martin, D., Matei, C., Microwave assisted extraction of polyphenols using a coaxial antenna and a cooling system (2017) Chem. Eng. Process, 122, pp. 373-379; Xiujuan Xie, H.F., Zhu, D., Zhang, W., Huai, W., Wang, K., Huang, X., Zhou, L., Microwave-assisted aqueous two-phase extraction coupled with high performance liquid chromatography for simultaneous extraction and determination of four flavonoids in Crotalaria sessiliflora L (2017) Ind. Crop. Prod., 95, pp. 632-642; Xunyou Tang, H.F., Zhu, D., Huai, W., Zhang, W., Fu, C., Xie, X., Quan, S., Simultaneous extraction and separation of flavonoids and alkaloids from Crotalaria sessiliflora L. by microwave-assisted cloud-point extraction (2017) Separ. Purif. Technol., 175, pp. 266-273; Zg�rka, G., Pressurized liquid extraction versus other extraction techniques in micropreparative isolation of pharmacologically active isoflavones from Trifolium L. species (2009) Talanta, 79, pp. 46-53; Yongqiang Wanga, D.L., Gao, Y., Ding, H., Liu, S., Han, X., Gui, J., Subcritical ethanol extraction of flavonoids from Moringa oleifera leaf and evaluation of antioxidant activity (2017) Food Chem., 218, pp. 152-158; Xi, J., Yan, L., Optimization of pressure-enhanced solid-liquid extraction of flavonoids from Flos sophorae and evaluation of their antioxidant activity (2017) Separ. Purif. Technol., 175, pp. 170-176; Xi, J., Luo, S., Pressure-enhanced solid�liquid extraction of rutin from Chinese scholar-tree flower: kinetic modeling of influential factors (2015) Separ. Purif. Technol., 156, pp. 809-816; Jae-Hyun Kang, B.M., Kim, S., Optimization by response surface methodology of lutein recovery from paprika leaves using accelerated solvent extraction (2016) Food Chem., 205, pp. 140-145; Zhan-Yi Zhao, S.L.L., Zhang, Q., Li, Y.-F., Dong, L.-L., Optimization of ultrasound extraction of Alisma orientalis polysaccharides by response surface methodology and their antioxidant activities (2015) Carbohydr. Polym., 119, pp. 101-109; Xinran Li, L.Y., Chen, F., Li, S., Jia, J., Gu, H., An efficient homogenate-microwave-assisted extraction of flavonols and anthocyanins from blackcurrant marc: optimization using combination of Plackett-Burman design and Box-Behnken design (2016) Ind. Crop. Prod., 94, pp. 834-847; Woodward, G., Kroon, P., Cassidy, A., Kay, C., Anthocyanin stability and recovery: implications for the analysis of clinical and experimental samples (2009) J. Agric. Food Chem., 57, pp. 5271-5278; Bo He, P.-X.Y., Zhang, L.-L., Yue, X.-Y., Liang, J., Jiang, J., Gao, X.-L., Optimization of Ultrasound-Assisted Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace (2016) Food Chem., 204, pp. 70-76; Sun, Y., Liao, X., Wang, Z., Hu, X., Chen, F., Optimization of microwave-assisted extraction of anthocyanins in red raspberries and identification of anthocyanin of extracts using high-performance liquid chromatography � mass spectrometry (2007) Eur. Food Res. Technol, 225, pp. 511-523; Brigita Lapornik, A.G.W., Pro�ek, M., Comparison of extracts prepared from plant by-products using different solvents and extraction time (2005) J. Food Eng., 71, pp. 214-222; Swer, T.L., Chauhan, K., Paul, P.K., Mukhim, C., Evaluation of enzyme treatment conditions on extraction of anthocyanins from Prunus nepalensis L (2016) Int. J. Biol. Macromol., 92, pp. 867-871; Li, M.M.H.B.B., Smith, B., Extraction of phenolics from citrus peels: II. Enzyme-assisted extraction method (2006) Separ. Purif. Technol., 48, pp. 189-196; Dani?man, G., Arslan, E., K?rca Toklucu, A., Kinetic analysis of anthocyanin degradation and polymeric colour formation in grape juice during heating (2015) Czech J. Food Sci. Food Chem., 33, pp. 103-108; Landbo, A.-K., Meyer, A.S., Enzyme-assisted extraction of antioxidative phenols from black currant juice press residues (Ribes nigrum) (2001) J. Agric. Food Chem., 49, pp. 3169-3177; Barzana, E., Rubio, D., Santamaria, R.I., Garcia-Correa, O., Garcia, F., Ridaura Sanz, V.E., L�pez-Mungu�a, A., Enzyme-Mediated solvent extraction of carotenoids from marigold flower (Tagetes erecta) (2002) J. Agric. Food Chem., 50, pp. 4491-4496; Michelle, N.S.-K., Feuereisen, M., Barraza, M.G., Zimmermann, B.F., Schieber, A., Pressurized liquid extraction of anthocyanins and biflavonoids from Schinus terebinthifolius Raddi: a multivariate optimization (2017) Food Chem., 214, pp. 564-571; Pe�a-Sanhueza, D., Inostroza-Blancheteau, C., Ribera-Fonseca, A., Reyes-D�az, M., Anthocyanins in berries and their potential use in human health (2017) Superfood and Functional Food-the Development of Superfoods and Their Roles as Medicine. InTech; Wianowska, D., Wisniewski, M., Simplified procedure of silymarin extraction from Silybum marianum L. Gaertner (2015) J. Chromatogr. Sci., 53, pp. 366-372; Elena Rosell�-Soto, F.J.B., Galanakis, C.M., Brn?i?, M., Orlien, V., Trujillo, F.J., Mawson, R., Knoerzer, K., Tiwari, B.K., Clean recovery of antioxidant compounds from plant foods, by-products and algae assisted by ultrasounds processing. Modeling approaches to optimize processing conditions (2015) Trends Food Sci. Technol., 42, pp. 134-149; Cyrielle Corbin, C.H., Fidel, T., Leclerc, E.A., Barakzoy, E., Sagot, N., Falgui�res, A., Renouard, S., Lain�, E., Development and validation of an efficient ultrasound assisted extraction of phenolic compounds from flax (Linum usitatissimum L.) seeds (2015) Ultrason. Sonochem., 26, pp. 176-185; Estrella Espada-Bellido, G.F.B., Ferreiro-Gonz�lez, M., Carrera, C., Palma, M., Barroso, C.G., Optimization of the ultrasound-assisted extraction of anthocyanins and total phenolic compounds in mulberry (Morus nigra) pulp (2017) Food Chem., 219, pp. 23-32; Duan, W., Jin, S., Zhao, G., Sun, P., Microwave-assisted extraction of anthocyanin from Chinese bayberry and its effects on anthocyanin stability (2015) Food Sci. Technol., 35, pp. 524-530; Varadharajan, V., Shanmugam, S., Ramaswamy, A., Model generation and process optimization of microwave assisted aqueous extraction of anthocyanins from grape juice waste (2017) J. Food Process. Eng., 40, p. e12486; Vahid Farzaneh, I.S.C., Modelling of microwave assisted extraction (MAE) of anthocyanins (TMA) (2017) J. Appl. Res. Med. Aromat. Plants; Wu, T., Qi, X., Liu, Y., Guo, J., Zhu, R., Chen, W., Zheng, X., Yu, T., Dietary supplementation with purified mulberry (Morus australis Poir) anthocyanins suppresses body weight gain in high-fat diet fed C57BL/6 mice (2013) Food Chem., 141, pp. 482-487; Zhan Cai, P.L., Qu, Z., Lan, Y., Zhao, S., Ma, X., Wan, Q., Jing, P., Conventional, ultrasound-assisted, and accelerated-solvent extractions of anthocyanins from purple sweet potatoes (2016) Food Chem., 197, pp. 266-272; M�ria Then, E.F., Szentmih�lyi, K., S�rk�zi, �., Ill�s, V., Effect of sample handling on alkaloid and mineral content of aqueous extracts of greater celandine (Chelidonium majus L.) (2000) J. Chromatogr. A, 889, pp. 69-74; Seabra, I.J., Braga, M.E.M., de Sousa, H.C., Statistical mixture design investigation of CO2�Ethanol�H2O pressurized solvent extractions from tara seed coat (2012) J. Supercrit. Fluids, 64, pp. 9-18; Choi, Y.H., Chin, Y.W., Kim, J., Jeon, S.H., Yoo, K.P., Strategies for supercritical fluid extraction of hyoscyamine and scopolamine salts using basified modifiers (1999) J. Chromatogr. A, 863, pp. 47-55; Xiao, J., Tian, B., Xie, B., Yang, E., Shi, J., Sun, Z., Supercritical fluid extraction and identification of isoquinoline alkaloids from leaves of Nelumbo nucifera Gaertn (2010) Eur. Food Res. Technol, 231, pp. 407-414; Ga��n, N.A., Dias, A.M.A., Bombaldi, F., Zygadlo, J.A., Brignole, E.A., de Sousa, H.C., Braga, M.E.M., Alkaloids from Chelidonium majus L.: fractionated supercritical CO2 extraction with co-solvents (2016) Separ. Purif. Technol., 165, pp. 199-207; S�rk�zi, �., Janics�k, G., Kursinszki, L., K�ry, �., Alkaloid composition of Chelidonium majus L. Studied by different chromatographic techniques (2006) Chromatographia, 63, pp. S81-S86; Suchomelov�, J., Bocho?�kov�, H., Paulov�, H., Musil, P., Taborska, E., HPLC quantification of seven quaternary benzo[c]phenanthridine alkaloids in six species of the family Papaveraceae (2007) J. Pharmaceut. Biomed. Anal., 44, pp. 283-287; Ruan, X., Cui, W.X., Yang, L., Li, Z.H., Liu, B., Wang, Q., Extraction of total alkaloids, peimine and peiminine from the flower of Fritillaria thunbergii Miq using supercritical carbon dioxide (2017) J. CO2 Util, 18, pp. 283-293; Krska, R., Crews, C., Significance, chemistry and determination of ergot alkaloids: a review (2008) Food Addit. Contam., 25, pp. 722-731; Lauber, U., Schnaufer, R., Gredziak, M., Kiesswetter, Y., Analysis of rye grains and rye meals for ergot alkaloids (2005) Mycotoxin Res., 21, pp. 258-262; Scott, P.M., Lawrence, G.A., Analysis of ergot alkaloids in flour (1980) J. Agric. Food Chem., 28, pp. 1258-1261; Di Mavungu, J.D., Malysheva, S.V., Sanders, M., Larionova, D., Robbens, J., Dubruel, P., Van Peteghem, C., De Saeger, S., Development and validation of a new LC�MS/MS method for the simultaneous determination of six major ergot alkaloids and their corresponding epimers. Application to some food and feed commodities (2012) Food Chem., 135, pp. 292-303; Mueller, C., Klaffke, H.S., Krauthause, W., Wittkowski, R., Determination of ergot alkaloids in rye and rye flour (2006) Mycotoxin Res., 22, pp. 197-200; Mueller, C., Kemmlein, S., Klaffke, H., Krauthause, W., Preiss-Weigert, A., Wittkowski, R., A basic tool for risk assessment: a new method for the analysis of ergot alkaloids in rye and selected rye products (2009) Mol. Nutr. Food Res., 53, pp. 500-507; Ware, G.M., Price, G., Carter, L., Eitenmiller, R.R., Liquid chromatographic preparative method for isolating ergot alkaloids, using a particle-loaded membrane extracting disk (2000) J. AOAC Int, 83, pp. 1395-1399; Malysheva, S.V., Di Mavungu, J.D., Goryacheva, I.Y., De Saeger, S., A systematic assessment of the variability of matrix effects in LC�MS/MS analysis of ergot alkaloids in cereals and evaluation of method robustness (2013) Anal. Bioanal. Chem., 405, pp. 5595-5604; Mohamed, R., Gremaud, E., Richoz-Payot, J., Tabet, J.-C., Guy, P.A., Quantitative determination of five ergot alkaloids in rye flour by liquid chromatography-electrospray ionisation tandem mass spectrometry (2006) J. Chromatogr. A, 1114, pp. 62-72; Koeppen, R., Rasenko, T., Merkel, S., Moench, B., Koch, M., Novel solid-phase extraction for epimer-specific quantitation of ergot alkaloids in rye flour and wheat germ oil (2013) J. Agric. Food Chem., 61, pp. 10699-10707; Oellig, C., Melde, T., Screening for total ergot alkaloids in rye flour by planar solid phase extraction�fluorescence detection and mass spectrometry (2016) J. Chromatogr. A, 1441, pp. 126-133; Oellig, C., Schwack, W., Planar solid phase extraction�a new clean-up concept in multi-residue analysis of pesticides by liquid chromatography�mass spectrometry (2011) J. Chromatogr. A, 1218, pp. 6540-6547; Oellig, C., Schwack, W., Planar solid phase extraction clean-up and microliter-flow injection analysis�time-of-flight mass spectrometry for multi-residue screening of pesticides in food (2014) J. Chromatogr. A, 1351, pp. 1-11; Kondamudi, N., Smith, J.K., McDougal, O.M., Determination of glycoalkaloids in potatoes and potato products by microwave assisted extraction (2017) Am. J. Potato Res., 94, pp. 153-159; Bai, Y., Li, C., Zhao, J., Zheng, P., Li, Y., Pan, Y., Wang, Y., A high yield method of extracting alkaloid from Aconitum coreanum by pulsed electric field (2013) Chromatographia, 76, pp. 635-642; Hosseini, S.S., Khodaiyan, F., Yarmand, M.S., Optimization of microwave assisted extraction of pectin from sour orange peel and its physicochemical properties (2016) Carbohydr. Polym., 140, pp. 59-65; Swamy, G.J., Muthukumarappan, K., Optimization of continuous and intermittent microwave extraction of pectin from banana peels (2017) Food Chem., 220, pp. 108-114; Cheng, Z., Song, H., Cao, X., Shen, Q., Han, D., Zhong, F., Hu, H., Yang, Y., Simultaneous extraction and purification of polysaccharides from Gentiana scabra Bunge by microwave-assisted ethanol-salt aqueous two-phase system (2017) Ind. Crop. Prod., 102, pp. 75-87; Shoaib, M., Shehzad, A., Omar, M., Rakha, A., Raza, H., Sharif, H.R., Shakeel, A., Niazi, S., Inulin: properties, health benefits and food applications (2016) Carbohydr. Polym., 147, pp. 444-454; Zhu, Z., He, J., Liu, G., Barba, F.J., Koubaa, M., Ding, L., Bals, O., Vorobiev, E., Recent insights for the green recovery of inulin from plant food materials using non-conventional extraction technologies: a review (2016) Innovat. Food Sci. Emerg. Technol., 33, pp. 1-9; Zhu, Z., Bals, O., Grimi, N., Vorobiev, E., Pilot scale inulin extraction from chicory roots assisted by pulsed electric fields (2012) Int. J. Food Sci. Technol., 47, pp. 1361-1368; Zhu, Z., Bals, O., Grimi, N., Ding, L., Vorobiev, E., Qualitative characteristics and dead-end ultrafiltration of chicory juice obtained from pulsed electric field treated chicories (2013) Ind. Crop. Prod., 46, pp. 8-14; Zhu, Z., Bals, O., Grimi, N., Ding, L., Vorobiev, E., Better damage of chicory tissue by combined electroporation and ohmic heating for solute extraction (2015) Food Bioprod. Process., 94, pp. 248-254; Wu, S., Lu, M., Wang, S., Amylase-assisted extraction and antioxidant activity of polysaccharides from Gracilaria lemaneiformis (2017) 3 Biotech, 7, p. 38; Perera, C.O., Yen, G.M., Functional properties of carotenoids in human health (2007) Int. J. Food Prop., 10, pp. 201-230; Roohinejad, S., Oey, I., Everett, D.W., Niven, B.E., Evaluating the effectiveness of ?-carotene extraction from pulsed electric field-treated carrot pomace using oil-in-water microemulsion (2014) Food Bioprocess Tech, 7, pp. 3336-3348; Strati, I.F., Oreopoulou, V., Recovery of carotenoids from tomato processing by-products-A review (2014) Food Res. Int., 65, pp. 311-321; Nath, P., Kaur, C., Rudra, S.G., Varghese, E., Enzyme-assisted extraction of carotenoid-rich extract from red capsicum (Capsicum annuum) (2016) Agric. Res., 5, pp. 193-204; Lu, C.W., Yin, Y.G., Yu, Q.Y., Optimized extraction of ginsenosides from ginseng root (Panax ginseng CA meyer) by pulsed electric field combined with commercial enzyme (2017) J. Food Process. Preserv., 41, p. e12766; Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K.M., Latha, L.Y., Extraction, isolation and characterization of bioactive compounds from plants� extracts (2011) Afr. J. Tradit., Complementary Altern. Med., 8, pp. 1-10; Proestos, C., Komaitis, M., Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds (2008) LWT- Food Sci. Technol, 41, pp. 652-659; Bubalo, M.C., Vidovi?, S., Redovnikovi?, I.R., Joki?, S., Green solvents for green technologies (2015) J. Chem. Technol. Biotechnol., 90, pp. 1631-1639; Smith, E.L., Abbott, A.P., Ryder, K.S., Deep eutectic solvents (DESs) and their applications (2014) Chem. Rev., 114, pp. 11060-11082; Abbott, A.P., Boothby, D., Capper, G., Davies, D.L., Rasheed, R.K., Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids (2004) J. Am. Chem. Soc., 126, pp. 9142-9147; Bosiljkov, T., Dujmi?, F., Bubalo, M.C., Hribar, J., Vidrih, R., Brn?i?, M., Zlatic, E., Joki?, S., Natural deep eutectic solvents and ultrasound-assisted extraction: Green approaches for extraction of wine lees anthocyanins (2017) Food Bioprod. Process., 102, pp. 195-203; Durand, E., Lecomte, J., Villeneuve, P., From green chemistry to nature: the versatile role of low transition temperature mixtures (2016) Biochimie, 120, pp. 119-123; Jancheva, M., Grigorakis, S., Loupassaki, S., Makris, D.P., Optimized extraction of antioxidant polyphenols from Satureja thymbra using newly designed glycerol-based natural low-transition temperature mixtures (LTTMs) (2017) J. Appl. Res. Med. Aromat. Plants, 6, pp. 31-40; Gouin, S., Microencapsulation: industrial appraisal of existing technologies and trends (2004) Trends Food Sci. Technol., 15, pp. 330-347; ?or?evi?, V., Balan?, B., Bel�?ak-Cvitanovi?, A., Levi?, S., Trifkovi?, K., Kalu�evi?, A., Kosti?, I., Nedovi?, V., Trends in encapsulation technologies for delivery of food bioactive compounds (2015) Food Eng.Rev., 7, pp. 452-490; Diamanti, A.C., Igoumenidis, P.E., Mourtzinos, I., Yannakopoulou, K., Karathanos, V.T., Green extraction of polyphenols from whole pomegranate fruit using cyclodextrins (2017) Food Chem., 214, pp. 61-66; Berna, A., Ch�fer, A., Mont�n, J.B., Subirats, S., High-pressure solubility data of system ethanol (1)+ catechin (2)+ CO 2(3) (2001) J. Supercrit. Fluids, 20, pp. 157-162; Seabra, I.J., Braga, M.E.M., Batista, M.T., de Sousa, H.C., Effect of solvent (CO2/ethanol/H2O) on the fractionated enhanced solvent extraction of anthocyanins from elderberry pomace (2010) J. Supercrit. Fluids, 54, pp. 145-152; Chang, C.J., Chiu, K.L., Chen,

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_128.png
Size:
2.73 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
pagination_TRAC_15083 (1).pdf
Size:
1.64 MB
Format:
Adobe Portable Document Format
Description: